
 

UNRELIABLE RETRIAL QUEUES IN A RANDOM ENVIRONMENT

DISSERTATION

James D. Cordeiro, Jr., Major, USAF

AFIT/DS/ENS/07-03

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



Research sponsored by the Air Force Office of Scientific Research. The United States
Government is authorized to reproduce and distribute reprints notwithstanding any
copyright notation thereon. The views and conclusions contained in this dissertation
are those of the author and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the Air Force Office
of Scientific Research or the United States Government.



AFIT/DS/ENS/07-03

UNRELIABLE RETRIAL QUEUES IN A

RANDOM ENVIRONMENT

DISSERTATION

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

James D. Cordeiro, Jr., A.B., M.S., M.S.

Major, USAF

September 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT/DS/ENS/07-03

UNRELIABLE RETRIAL QUEUES IN A RANDOM ENVIRONMENT

James D. Cordeiro, Jr., A.B., M.S., M.S.

Major, USAF

Approved:

Dr. Jeffrey P. Kharoufeh
Committee Chair

Date

Dr. Adedeji B. Badiru
Dean’s Representative

Date

Dr. Sharif H. Melouk
Committee Member

Date

Dr. Mark E. Oxley
Committee Member

Date

Accepted:

M.U. Thomas Date

Dean, Graduate School of Engineering
and Management



Table of Contents

Page

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Motivation . . . . . . . . . . . . . . . 1

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . 9

1.3 Dissertation Outline . . . . . . . . . . . . . . . . . . . 10

2. Review of the Literature . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Analysis and Control of Retrial Queues . . . . . . . . . 12

2.2 Retrial Queues With Unreliable Servers . . . . . . . . 14

2.3 Queueing Systems in a Random Environment . . . . . 17

2.4 Unreliable Queueing Systems in Random Environments 24

3. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Quasi-Birth-and-Death (QBD) Processes . . . . . . . 29

3.1.1 Level-Independent Processes . . . . . . . . . . 30

3.1.2 Level-Dependent Processes . . . . . . . . . . . 34

3.1.3 Ergodicity of QBDs . . . . . . . . . . . . . . . 38

3.2 M/G/1-Type Processes . . . . . . . . . . . . . . . . . 49

3.2.1 Markov Renewal Sequences and the M/G/1 Queue 49

3.2.2 Level-Independent Processes . . . . . . . . . . 52

iv



Page

3.2.3 Level-Dependent Processes . . . . . . . . . . . 54

3.2.4 Ergodicity Conditions . . . . . . . . . . . . . 54

4. Exponential Service Requirements . . . . . . . . . . . . . . . . 59

4.1 Model Description and Notation . . . . . . . . . . . . 59

4.2 Stability and Steady-State Analysis . . . . . . . . . . 64

4.3 Performance Measures . . . . . . . . . . . . . . . . . . 71

4.4 Useful Algorithms . . . . . . . . . . . . . . . . . . . . 73

4.5 Busy Period Analysis . . . . . . . . . . . . . . . . . . . 80

4.6 Numerical Illustrations . . . . . . . . . . . . . . . . . . 83

4.6.1 Example 1: Three-State Environment . . . . . 83

4.6.2 Example 2: Seven-State Environment . . . . . 86

4.6.3 Comparison to Simulated Data . . . . . . . . 88

5. General Service Requirements . . . . . . . . . . . . . . . . . . . 91

5.1 Model Description and Notation . . . . . . . . . . . . 91

5.2 Derivation of the Semi-Markov Kernel . . . . . . . . . 93

5.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . 114

5.3.1 Computation of the Traffic Intensity . . . . . 120

5.3.2 Limiting Values of P
(i)
k . . . . . . . . . . . . . 121

5.3.3 The Ergodicity of {(Rn, Zn) : n ≥ 0} . . . . . 124

5.3.4 Application to the Exponential Model . . . . . 128

6. Queueing Model Optimization . . . . . . . . . . . . . . . . . . . 131

6.1 Problem Formulation . . . . . . . . . . . . . . . . . . . 131

6.2 Solution Procedure . . . . . . . . . . . . . . . . . . . . 132

6.3 Numerical Illustrations . . . . . . . . . . . . . . . . . . 134

6.3.1 Three-State Environment . . . . . . . . . . . . 134

6.3.2 Five-State Environment . . . . . . . . . . . . 136

v



Page

7. Contributions and Future Research . . . . . . . . . . . . . . . . 140

Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.1 Matrix Binary Operators . . . . . . . . . . . . . . . . . 143

A.1.1 The Kronecker Product and Sum of Matrices . 143

A.1.2 Matrix Convolution Products . . . . . . . . . 144

A.2 PH-Random Variables . . . . . . . . . . . . . . . . . . 145

A.2.1 Continuous PH-Distributions . . . . . . . . . 146

A.2.2 Discrete PH-Distributions . . . . . . . . . . . 147

A.2.3 Properties of the PH-Distribution . . . . . . . 148

A.3 Markov-Modulated Poisson Processes (MMPP) . . . . 149

A.3.1 The Markov-Modulated Poisson Process as a Markov

Renewal Process . . . . . . . . . . . . . . . . 149

A.3.2 The Relationship of the PH-Distributions to the

Markov-Modulated Poisson Process . . . . . . 150

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

vi



List of Figures
Figure Page

3.1. Transition rate diagram for a standard birth-and-death process. 27

4.1. Graphical depiction of a single-server retrial queue. . . . . . 60

4.2. The infinitesimal generator matrix Q∗. . . . . . . . . . . . . 62

4.3. Top-level algorithm for computing the steady-state distribution

{πi(K) : 0 ≤ i ≤ K − 1}. . . . . . . . . . . . . . . . . . . . . 77

4.4. Procedure to compute the rate matrix RK−1 in step (2) of Al-

gorithm 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5. Procedure to compute UD(N, i) for the Algorithm 2 (c.f. Fig.

4.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6. Procedure to compute π(K) for some suitably-chosen K > 0. 80

4.7. Pictorial representation of steady-state orbit-size probabilities for

Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1. Graphical depiction of an idle failure (Case 1). . . . . . . . . 96

5.2. Graphical depiction of a failure that occurs during the service

of a (primary) customer. . . . . . . . . . . . . . . . . . . . . 97

6.1. Graphical depiction of the sequence of MADS iterations for the

three-state example. . . . . . . . . . . . . . . . . . . . . . . . 136

6.2. Graphical depiction of the sequence of MADS iterations for 5-

state example. . . . . . . . . . . . . . . . . . . . . . . . . . . 139

vii



List of Tables
Table Page

4.1. Summary of parameters for 3-state example. . . . . . . . . . . . 84

4.2. Steady-state probabilities of orbit size for Example 1. . . . . . . 84

4.3. Parameters for the system of Example 2. . . . . . . . . . . . . 87

4.4. Steady-state probabilities for orbit sizes up to and including i = 20
for the model presented in Example 2. . . . . . . . . . . . . . . 87

4.5. Performance measures for Examples 1 and 2. . . . . . . . . . . 88

4.6. Simulation output versus QBD approximation. . . . . . . . . . 90

6.1. Problem data for 3-state example. . . . . . . . . . . . . . . . 135

6.2. Optimal solution for 3-state example. . . . . . . . . . . . . . 135

6.3. Problem data for 5-state example. . . . . . . . . . . . . . . . 137

6.4. Optimal solution: 5-state example. . . . . . . . . . . . . . . 138

viii



AFIT/DS/ENS/07-03

Abstract

This dissertation investigates stability conditions and approximate steady-state

performance measures for unreliable, single-server retrial queues operating in a ran-

domly evolving environment. In such systems, arriving customers that find the server

busy or failed join a retrial queue from which they attempt to regain access to the

server at random intervals. Such models are useful for the performance evaluation

of communications and computer networks which are characterized by time-varying

arrival, service and failure rates. To model this time-varying behavior, we study sys-

tems whose parameters are modulated by a finite Markov process. Two distinct cases

are analyzed. The first considers systems with Markov-modulated arrival, service,

retrial, failure and repair rates assuming all interevent and service times are exponen-

tially distributed. The joint process of the orbit size, environment state, and server

status is shown to be a tri-layered, level-dependent quasi-birth-and-death (LDQBD)

process, and we provide a necessary and sufficient condition for the positive recur-

rence of LDQBDs using classical techniques. Moreover, we apply efficient numerical

algorithms, designed to exploit the matrix-geometric structure of the model, to com-

pute the approximate steady-state orbit size distribution and mean congestion and

delay measures. The second case assumes that customers bring generally distributed

service requirements while all other processes are identical to the first case. We show

that the joint process of orbit size, environment state and server status is a level-

dependent, M/G/1-type stochastic process. By employing regenerative theory, and

exploiting the M/G/1-type structure, we derive a necessary and sufficient condition

for stability of the system. Finally, for the exponential model, we illustrate how

the main results may be used to simultaneously select arrival and service rates that

minimize the mean time customers spend in orbit, subject to bound and stability

constraints.
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UNRELIABLE RETRIAL QUEUES IN A

RANDOM ENVIRONMENT

1. Introduction

Since the introduction of the first digital computers some 70 years ago, networks of

information systems have become an integral part of the world’s financial, industrial,

educational, and governmental institutions. We have come to depend almost solely

on these information systems and the networks upon which they reside for managing

our financial systems, utility infrastructures, and countless other functions essential

to modern living. The negative side of this transformation is that these systems

are subject to the unquestionably hit-or-miss task of relaying data through Internet

pathways that are scarcely controlled. Even the internal networks of large and small

organizations are not immune from the often critical risk of losing the ability to

exchange information in an accurate and timely fashion. For this reason, it has

become necessary to understand the factors that influence the degradation, and

ultimately the failure, of information systems.

1.1 Background and Motivation

Maintaining the integrity of information networks has become a universal con-

cern for information technology managers from all areas of society. Corporations

and smaller businesses that rely on the internet for sales, marketing, or other direct

support must not only be able to communicate with their clients and suppliers, but

they must do so in a prompt manner, all the while sending and receiving large quan-

tities of information over global distances. Governmental organizations find common

ground with the private sector in their desire to maintain and improve information
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flow. For example, timely communication is an essential staple in military applica-

tions. Battle effectiveness is no longer measured by sheer volumes of materiel and

manpower, but rather by precision strikes, which themselves are enabled by correct

intelligence and the effective coordination of battlefield commanders distributed over

wide geographic areas. The information systems network has become, in fact, the

single most important center of gravity of opposing military forces, and not just in

conflict, but particularly for private entities and even nations in conducting their

day-to-day business.

Since computer networks are subject to seemingly-random phenomena over

very small time scales, they are difficult to observe directly. It is therefore advanta-

geous to employ mathematical models as proxies for empirical observations or direct

experimentation. One such model that is frequently used by analysts in the com-

puter and telecommunications industries is the queueing system. A queue consists

of an input process for arrivals, a waiting room (otherwise known as a buffer), and

servers that process the arrivals. The input is itself a random process that describes

the timing of arrivals to the queue, and is also characterized by the behavior of these

arrivals; for instance, these may arrive individually or in groups (batches), or they

may choose to renege and abandon the queue entirely. The service mechanism of a

queueing system is likewise determined by a random process, but one that describes

the duration of service episodes. It is furthermore regulated by a queueing discipline

which dictates the order in which arriving entities are processed. Either or both of

the input and service processes may be deterministic, as in an automated production

line, or probabilistic, as in a traffic flow model. In the classical queueing models,

servers are usually assumed to be reliable. Therefore, entities that leave the system

do so only because they have received service, and then they depart permanently.

However, it is apparent that the assumption of failure-free operation is not a re-

alistic one, and so the classical system fails to incorporate an essential stochastic
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characteristic: server failure. Understanding systems in which such failures occur is

particularly important to those who analyze communication networks.

It may be unrealistic to expect entities to be lost by a system even if the server

is busy or has failed. Current data-link protocols, for instance, usually employ

a handshake procedure to verify that a successful communication has been made,

during which time the sent data is stored in a buffer for later re-transmission if

necessary. Such a protocol is described in [110] and operates in the following manner.

The sending device starts off the process by transmitting an information packet to

the receiving device. It is important to note here that it keeps the packet until it has

received verification from the receiver that it has arrived uncorrupted, a task which

is accomplished via the checksum method.1 If the receiver determines that it has

received the packet correctly, then it sends an acknowledgment (ACK) back to the

sending device, together with bits that will allow the sender to verify the integrity

of the ACK. If, in the course of this exchange, the packet or the ACK becomes

corrupted, then the sender will determine that it did not receive a valid ACK. It will

then wait for a prescribed timeout period in order to determine whether or not a

transmission error has occurred and resend the packet. In the parlance of queueing

theory, such a mechanism in which ejected (or rejected) customers return at random

intervals until they receive service is called a retrial queue. Retrial queues have

application in a wide variety of fields, and, as this example clearly shows, they are

particularly useful in describing communication systems.

A retrial queue is similar to an ordinary queueing system in that there is

an arrival process and one or more servers. The fundamental differences are that

(i) entities who enter during a down or busy period of the server or servers may

reattempt service at some random time in the future, and (ii) a waiting room, which

1The checksum method is used for the detection of errors in transmitted messages. A compu-
tation is performed on the essential bits of a message, stored, and then transmitted along with the
message. The same computation is performed on the receiving end, and a comparison is made to
the transmitted checksum information.
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is known as a primary queue in the context of retrial queues, is not mandatory.

In place of the ordinary waiting room is a buffer called an orbit to which entities

proceed after an unsuccessful attempt at service, and from which they retry service

according to a given probabilistic or deterministic policy. Note that the orbit may

or may not be capacitated depending upon the application. More likely than not,

orbits that simply represent a pool of returning customers rather than an actual

physical waiting area will have an unbounded capacity. A typical example of an

infinite-capacity retrial queue orbit would be the pool of customers dialing into a

call center who, having abandoned their service request after waiting (i.e. left the

primary queue), try again at a later time (i.e. join the retrial orbit).

A key distinguishing feature of retrial queues is the way in which retrials are

conducted. Customers may reattempt service independently of each other at random

or fixed intervals of time, or they may follow more structured policies. For instance,

one might impose a queueing discipline such as ‘first-in-first-out’ (FIFO) or ‘last-

in-first-out’ (LIFO) upon the entities in the orbit. Yet another policy is to classify

arrivals to the retrial queue and establish a prioritization scheme based upon class

membership. Some systems may also incorporate impatient customers who will retry

a finite number of times or for a fixed time interval2 (which could have zero duration)

and then leave the system permanently. Any combination of these priorities may

be imposed as well, but the analyst must keep in mind the analytical complexity

that these features may introduce into the system description and the numerical

computation of the system measures.

A classic example of a retrial queue application may be found in the description

of caller behavior in cellular telephone networks. In the basic model, a cellular service

area is partitioned into subareas known as cells, each of which contains a base station

2The time interval may vary randomly for each customer or be a deterministic value that is
assigned by class or some other criteria.
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that in turn patches each call that it handles into the national phone network.3

Calls that originate in one cell but move into an adjoining cell are assigned a certain

frequency in the new cell should one exist. If one does not exist, then the call is

dropped. The underlying assumption of the retrial model is that the caller will try

again and then leave the system when the conversation is terminated. Extensions of

this model may, for example, include impatient or prioritized callers as well (consider

911). Regardless, it is not unreasonable to assume that persons who initiate calls do

so independently of each other.

The net effect of the partitioning of a service area in a cellular network is an

increase in system call capacity that ultimately derives from the reuse of frequencies

amongst the various cells. Borst, et al. [23] describe a modified version of the orig-

inal cellular network architechture called a layered network that further augments

network capacity. In this arrangement, cells are themselves partitioned into what

are termed microcells. These sub-partitions are optimally used to cover small areas

that experience a high volume of calls, which, in the jargon of the cellular communi-

cations industry, are known as hotspots. Calls that are blocked at the microcell level

are sent to overflow buffers at the macrocell level. Here the call waits until it is either

assigned a channel by the macrocell or a channel opens up in the original microcell

(repacking). Retrials correspond here to the repacking process, which occurs accord-

ing to constant exponential retrial rates that depend upon the overflow buffer. Such

a scheme tremendously increases the capacity of each cell since (i) channels may

be reused more frequently, and in places where they are most needed, and (ii) the

repacking scheme frees up additional channels in the macrocell for use elsewhere.

Retrial queues are likewise prevalent in the evaluation and design of computer

networks as they are in telecommunications. Libman and Orda [72] describe an op-

timal scheme for connections to internet websites from client computers. One of the

3In the telecommunications jargon, this is often referred to as ‘POTS’, which is an acronym for
‘plain old telephone system’.
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many aggravating issues for users of the internet is the problem of excessively long

wait times when attempting connections to slow or inoperative web servers. This

wait duration, known formally as the timeout duration, is defined as the maximum

time that a server allows between the receipt of a connection request and the acknowl-

edgement by the server of failure or success. Current protocols set a conservatively

large timeout in order to guarantee a high probability of receipt of acknowledgement.

This policy works reasonably well in systems with a low blocking probability, but

otherwise creates unnecessarily lengthy waiting periods before a ‘failure-to-connect’

is issued. The optimal policy turns out to be one in which the server retries the con-

nection one or more times before embarking on the timeout period. This reduces the

expected time to success (since retrials may take different connection paths) while

assigning little additional work to the server. The effectiveness of such a policy is

certainly familiar to anyone who has attempted to connect to a slow website.

Yet another application of the retrial queueing model to computer networking,

and particularly to wireless networking, is described in [110]. The problem in this

case is to determine a protocol that will facilitate communication between clients

and servers in a multiple-accessnetwork, which denotes a system of networked clients

that use a single communication channel.4 Since clear transmission frequencies are

hard to come by, it is often necessary to resort to the use of a single channel for

transmitting data packets. As a result, there must be some form of protocol in place

that permits the network to function despite the inevitability of cross-interference

that occurs when two or more clients attempt to transmit through the same channel

simultaneously. There are several such protocols that are being, or have been used,

during the past 40 years, the first and most straightforward of which is known as the

ALOHA protocol, which was developed at the University of Hawaii during the early

1970s. When two computers in a network utilizing this protocol transmit a packet

4The ‘channel’, as it is known in computer networking terminology, is synonymous with the
queue in the corresponding stochastic model. In the context of wireless networking, the channel
corresponds to the radio frequency used by the network for communication amongst clients.
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at the same time, the subsequent interference is detected by both computers, after

which each independently waits a random time before re-transmitting their packets.

The inefficiency of this method results from the fact that the whole packet is always

transmitted before detection may take place. The Ethernet protocol, on the other

hand, uses what is called the ‘Carrier sense multiple access with collision detection’,

or CSMA-CD, to sense when packets are in the transmission channel. This enables

the network to quickly detect the occurrence of simultaneous transmissions and then

terminate the transmissions before a complete packet has been sent.

No system resides or operates in a vacuum, and information systems are like-

wise influenced by an environment, which may be described as being either physical

(hardware-related) or virtual (network-related). Of a certainty, the most critical

and/or fragile systems must physically reside in controlled environments in order to

protect the servers and network hardware from the untempered elements. That we

take these precautions stems from our knowledge that the net effect of various factors

such as temperature, humidity, and shock results in a degradation of the hardware

over time, or may even cause sudden or catastrophic failure to occur. Further-

more, certain combinations of environmental factors inflict such damage at greater

rates than others, and so we bank our investment in hardware on the assumption

that controlling the environment, in other words, regulating the stochastic factors of

temperature, humidity, etc., will mitigate the risk of total system failure.

In the context of networking, it is just as important to understand the user

environment, for this determines the patterns of data flow, and thus the frequency

of occurrence of certain events such as packet collisions across a channel. Larger

networks tend to experience such phenomena in direct proportion to the number of

users due to the fact that storage and link capacities are finite, and expensive at

that. Moreover, variations in the number of users at different times will likely affect

the speed at which information is disseminated within, or transferred out of, a given

network. In developing a stochastic model of such a system, one may opt to ignore
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the minutiae of these variations by assigning average rates of data packet arrivals

and transmission; indeed, this may be sufficient if the network is small, sees little

variation, or has a large capacity with respect to the number of authorized users.

In other scenarios, however, the greater sensitivity of system parameters to such

variations makes it necessary to include them in the model. An example of such

a system would be a group of web servers that serve a nationwide customer base.

Such systems often operate at or near capacity during peak hours, and the resulting

strain on the system exhibits itself in dramatically decreased data-transfer rates. At

other times, the transfer rates will be at the maximum that the physical hardware

can support. Modeling such networks with an adequate degree of fidelity may thus

entail the adjustment of service rates based on the time-of-day.

One alternative for incorporating the effects of external environmental factors

into a stochastic model is by using a random environment. The random environment

process is itself a stochastic process whose state is usually assumed to be independent

of the state of the process that it influences. It may take a number of varied forms

such as a discrete- or continuous-time Markov chain, a random walk, a semi-Markov

process, or Brownian motion, to name a few. These mathematical objects are also

called modulating processes. Consequently, if the random environment is Markovian,

the primary stochastic process to which it is attached is said to be Markov-modulated.

One might also see the key phrases ‘varying randomly’, ‘state-dependent’ (if one is

referring to the state of an external modulating process, not an internal system

state), or ‘in a Markovian environment’. There are other synonyms for the same

exogenous environmental process.

A random environment can be used to modulate any of the system parameters,

which in the context of a retrial queue queue might include the arrival, service, or

retrial rates. If another process – such as one that provides the timing of server

failures – feeds into the same system, then the random environment may be used

to modulate its parameters as well. As may be expected, the dependence of system
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parameters upon the random environment is implemented via the use of functional

relationships with time as the dependent variable. The most straightforward way

to define such a function is to simply assign rates deterministically according to

the state of the random environment. More uncertainty may be introduced into the

stochastic model by constructing a process that assigns the rates randomly according

to a stream taken from a probability distribution. Regardless, care must be taken to

distinguish the external random process from the internal version in which the rates

depend upon the states of the primary system. This latter object is often called

a state-dependent model, although it appears in the literature occasionally in the

random environment context.

It is easy to see the relevance of this combination of the retrial queueing model

and an external random environment. For a physical environment, one may use a

degradation model in which the effects of heat, humidity, radiation, and other effects

produce cumulative damage, to include electronic hardware and other, more solid-

state items. For the ethernet model, one may have incidents of network congestion

occur on the heels of arrivals in, say, an external Poisson process, or the transmission

rate may vary according to the state of a semi-Markov process. If one is confident

that the random process modulates rates or otherwise behaves in a manner similar

to that of the actual system, then one might expect that the state measures derived

from such a model will accurately predict how the system will behave under the

assumed conditions.

1.2 Research Objectives

Owing to the utility and interesting mathematical properties of retrial queueing

models, a vast literature on the subject has emerged over the past several decades.

However, relatively few researchers have touched upon the subject of unreliable

servers in the retrial context, and even fewer have considered the impact of a ran-

domly evolving operating environment on the performance measures of such systems.
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A primary goal of this research is to advance the theory of retrial queues by consid-

ering systems whose operating parameters (e.g., arrival, service, retrial, failure and

repair rates) are modulated by a time-varying environment. The main objectives of

this dissertation can, therefore, be summarized as follows:

1. To develop basic results, such as stability conditions and performance mea-

sures, for unreliable, single-server retrial queues that operate in a random

environment assuming customers bring an exponentially distributed service

requirement to the system;

2. To extend the results obtained in Objective (1) to consider systems in which

customers bring generally distributed service requirements to the system;

3. To illustrate how the main results can be used to improve the performance of

such systems by optimally selecting operating parameters that minimize the

steady-state mean time spent in the retrial orbit.

1.3 Dissertation Outline

In the next chapter, we review the literature pertinent to general retrial queues,

retrial queues with unreliable servers, and general (non-retrial) queues operating in

a random environment. In Chapter 3, the rudimentary concepts of the class of

quais-birth-and-death (QBD) processes, as well as Markov chains of the M/G/1-

type, are reviewed. These concepts serve as a foundation for the main stability

result of the exponential model in Chapter 4 which provides valuable insights into

the conditions needed for positive recurrence of generalized level-dependent QBD

processes. Chapter 5 extends the results of Chapter 4 by considering customers who

bring a generally distributed service requirement, an extension that adds considerable

complexity to the analysis of the model. This model possesses an embedded level-

dependent Markov chain of M/G/1-type, and we prove conditions for the stability

of this complex system. The sixth chapter illustrates how the results of Chapter 4
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can be used to enhance the performance of unreliable retrial queueing systems by

optimizing the arrival and service rates associated to the distinct environment states.

The seventh and final chapter summarizes the main contributions of this dissertation

and provides some directions for future work in this area.

11



2. Review of the Literature

Retrial queueing comprises a significant portion of the modern literature on queueing

theory. For a general survey of retrial queues and a summary of many results, the

reader is directed to the works of Yang and Templeton [113], Falin [38] and refer-

ences therein. The wide range of applications of retrial queues with unreliable servers

has generated much interest among stochastic systems researchers. On a seemingly

different note, the fundamental relationship between the reliability of an item and

its working environment has popularized research into random environments since

the late 1940s. The high level of attention that each of these separate subject areas

has received has not, however, produced the simultaneous pairing of retrial queue-

ing systems with unreliable servers whose parameters are modulated by a random

environment. In this chapter, we shall review the literature that pertains to these

unrelated research tracks and the emerging literature that begins to suggest their

combination.

2.1 Analysis and Control of Retrial Queues

A retrial queue, as defined by Falin in [38], is essentially a queueing system with

no waiting room in which blocked entities, or customers, may revisit the server at

some random time in the future. Thus, these secondary (retrial) entities, do not leave

the system, but instead proceed to a buffer, which in the context of retrial queues is

termed an orbit. No stipulation is placed on the structure of the orbit nor the policies

that specify how entities retry the server or how they are released from the system.

In particular, the leeway granted in determining the nature of the blocking, whether

it be a busy or failed server, and the mechanism by which blockings occurs leads to a

wide variety in the open literature on the topic. In general, however, the structure of

the orbit takes one of two forms. The first is a queueing structure for which entities

are released back to the server according to a first-in-first-out (FIFO) discipline. The
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other type is that of an infinite-server queue in which each retrial entity revisits the

server after some randomly-distributed duration but independently of every other

retrial entity. This paradigm is appropriate for modeling such real-world systems as

computer networks in which the entities – data packets – are homogeneous and no

ordering protocol is defined.

The seminal papers in retrial queueing were published by Kosten [58], Clos

[30], Wilkinson [112], and Cohen [31, 32], each of whom were working to solve block-

ing issues in telephone networks. The key to their research was the determination of

performance measures related to blocking probabilities; for example, the probability

of having n busy trunks (primary paths in a telephone network) and the percentage

of dropped calls. In a 1957 paper by Cohen [32], the entities are calls that pos-

sess independent and identically distributed (i.i.d.) general inter-arrival times with

exponential holding times (in service). Calls may take any idle trunk; if no such

trunk exists, then the call may either be discarded or sent to an overflow trunk -

which is, of course, the retrial orbit. This system is useful in modeling a telephone

caller who, once blocked by the system from placing his call, may redial at some

indeterminate time in the future. As Clos [30] observes, the preponderance of callers

will in fact try to call again, which is synonymous with ‘will not leave the system’.

See [30, 31, 32, 58, 112] for further details on the authors’ respective models and

analytical approaches.

The retrial process as envisioned by Kosten [58], Clos [30], Wilkinson [112] was

extended to single-server queues with no waiting room and general service times –

in other words, a retrial queue based on the M/G/1/1 model – by Keilson, Coz-

zolino, and Young [48]. Retrial times, as well as primary inter-arrival times, follow

exponential distributions. The authors derive the basic asymptotic measures for the

one-server case based upon transient results derived by Keilson and Kooharian in

[49] for the standard M/G/1 queue.
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The next significant result was published in 1983 by V.G. Kulkarni [60]. In this

article, he proves a seemingly simple equilibrium result λR = λsRs, which basically

states that, in the long run, the mean number of total unsuccessful attempts by

incoming customers equals the number of such attempts during service periods. He

then uses this fact to obtain the mean number of differentiated customers in each of

two classes in an M/G/1 system with different exponential retrial times and arrival

rates. Choi and Park [29] follow on the heels of this result in their 1990 paper. Their

retrial model consists of a primary queue and orbit, each of infinite capacity, and a

Bernoulli splitting mechanism that routes a proportion of blocked customers to the

orbit. Falin and Artalejo [39] expand the analysis of finite source retrial queues1 to

include the waiting time process and an excursion into transient measures via the

busy period. Finally, Kumar and Arivudainambi [64] retrial queues consider the

M/G/1 retrial model in which server vacations are controlled by a Bernoulli process

and the orbit is governed by a FIFO discipline in which only the customer at the head

of the orbit queue is allowed to access the server. The Bernoulli vacation process is

of special interest as it relates directly to the topic of failures in retrial queues, which

we shall introduce next.

2.2 Retrial Queues With Unreliable Servers

In the conventional retrial queueing model, customers proceed to the orbit if

they find all of the servers busy upon entering the system. It is a natural extension

to consider failures of the server, particularly in light of the relevance of such a

model to the reliability study of real-world systems. Much of the terminology in the

literature regarding ordinary queues with unreliable servers has passed on to their

counterparts in retrial queues. In this case, it becomes important to distinguish

between failures that occur during service (‘active breakdowns’) and those that occur

while the server is idle (‘nonactive breakdowns’) since this will obviously impact the

1In other words, there exist a finite number of possible arrivals to the queue.
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orbit size. Realistically speaking, failures occur probabilistically, with failure states

represented in the model by states in a stochastic process (such as a Markov chain).

This scheme may be simplified further via the use of alternating states in which a

two-state stochastic process governs failure in an on-off fashion. Accordingly, the

server is assigned a rate of repair that is independent of the retrial rate of customers

in the orbit, while arrival and service rates depend upon the state of a discrete

modulating process. This creates an interesting dynamic in which such measures as

the orbit size, customer throughput, and sojourn time, become the primary focus of

investigation.

The first mention of retrial queues with unreliable servers appeared in an article

by Yang and Templeton [113], which is a survey of retrial queues in the spirit of

Falin [38], but which additionally associates the breakdown-related topic of retrial

queues to server vacations.2 Nevertheless, Aissani [4] is credited with developing the

first retrial queueing model3 that included server breakdowns in his seminal article

published in 1988. The author introduced two variations of the unreliable retrial

model: (1) the queue whose server breakdowns occurs according to a Poisson process,

and (2) the same queue, but with failures determined by a two-state Markov chain.

He then generates the performance measures of interest via probability generating

functions (p.g.f.).

Two years later, Kulkarni and Choi [62] independently derived results for an

M/G/1/1 retrial queue with exponentially-distributed retrial and failure times. Just

as in [60], the failure rate is modulated by the status of the server, where by ‘status’

the authors mean ‘idle’ or ‘busy’. In the meantime, Aissani [4] continued to build

upon the results he had obtained up to 1988. In the article that follows, Aissani [5]

re-examined the first of the two models studied previously in [4] by generalizing the

distributions of the failure times and by specifying batch Poisson arrivals. He demon-

2The distinction here is that vacations are server breakdowns that occur when the server is idle.
3The author refers to retrials here as repeated calls. Other synonyms for retrial include repeated

orders, repeated attempt, and returning customer.
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strated that the ergodicity conditions hold for the corresponding three-dimensional

system evolution process. He then derived an expression for the z-transform of the

long-run size of the secondary-source buffer (orbit).

Aissani [6] continued to elaborate upon his model with the addition of redun-

dant servers that substitute for failed primary servers during a corresponding repair

epoch. This was followed by a paper that he co-authored with Artalejo in 1998

[7] in which he introduces a modified version of the M/G/1/1 queue that appeared

in its original form in both [4] and [62]. In that paper, the system is subject to

exponentially-distributed server failures in which distinct failure rates apply accord-

ing to whether the server is busy or idle. They also introduced the auxiliary queueing

system in which interrupted customers have the choice either to leave the system

or to remain. Lastly, the authors introduced the concept and terminology of the

fundamental server period, which is defined as the period of time between the start

of service and the next time that the server is available to begin processing another

customer. Note that the interval of time corresponding to a fundamental server pe-

riod does not necessarily end with the conclusion of the current customer’s service in

an unreliable retrial system. To be more specific, if service is interrupted, then this

interval of time ends at the instant that the server becomes operational (i.e. after

repair).

The years following 1994 are marked by steady progress in the development of a

variety of queues with unreliable servers as evidenced by the numerous contributions

published during that time period. Of notable mention is the work of Sherman

and Kharoufeh [96], in which results are derived for an M/M/1 retrial queue with

unreliable server and infinite-capacity primary queue and retrial orbit. The authors

derive explicit expressions for the limiting distributions of orbit size, queue size, and

number in the system via a p.g.f. approach. Other useful references from this fruitful

period of time can be found in [9, 11, 14, 35, 42, 52, 59, 63, 65, 70, 71, 97, 102, 111].
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2.3 Queueing Systems in a Random Environment

In the context of queueing theory, the term ‘random environment’ refers to a

stochastic process that controls, or modulates, one or more of the parameters of the

queue. In other words, it is an exogenous process whose evolution is independent

of the process it modulates. If the external random process is Markovian, then the

primary stochastic process is said to be Markov-modulated, and it is this form of

random environment that is most often seen in the queueing literature, though it is

certainly not the only one. The number of classifications into which the work to-date

on stochastic systems operating in random environments is vast. Hence, the reader

is referred to [21, 34, 43, 55, 56, 90, 107] for further reading.

The modulating random process possesses the natural interpretation of being

an external environment that instigates change in some system parameter of interest.

As an example, one might consider the effects of ambient temperature and humidity

on the proper operation of a circuit board to be an interpretation of the analytical

notion of an external environment. This connection makes queueing in a random

environment critical to the analytical modeling of real-world environmental effects,

and which leads to the alternate moniker ‘random environment’. In what follows, we

will discuss the important trends and results over the past 40 years since the seminal

papers on random processes in queueing have appeared. This will make apparent

the current open problems involving queues in random environments, and thus, pave

the way for the contributions that will be made in this dissertation.

Random environments, as they appear in the literature, are cast into the form

of virtually every stochastic process known using every possible modulating mecha-

nism. The earliest methods for incorporating a random environment into a stochastic

model were either to use a random draw of service (or arrival) rates discretely (using

Bernoulli trials) or in accordance with some continuous distribution. Later, finite-

state Markov chains, and even semi-Markov processes, were employed as modulating

processes. Accordingly, random environments appeared under a variety of names,
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such as ‘variable service and arrivals’ and even as specialized as ‘wear processes’.

Researchers have considered nearly every possible facet of these environments, not

only for their intrinsic interest, but also for the fidelity that these models afford to

analysts studying real-world systems.

The seminal articles on this subject were published by four sets of authors over

a period of a decade. The first batch that appeared in 1963 consisted of works by

Eisen and Tainiter [37], Avi-Itzhak [18], and Avi-Itzhak and Naor [19]. This was

followed in 1966 by the work of Leese and Boyd [69], and, finally, in 1971 by Yechiali

and Naor [115], who independently worked on the same problem as the one that

appeared in [37]. After the initial foundations were laid in the intervening ten-year

period since 1963, researchers began to experiment with various combinations of

stochastic processes and random environments. Stochastic researchers from other

fields picked up the topic, and soon thereafter, it became a staple in the stochastic

elements of every physical science, and particularly all fields of engineering and

reliability.

Among the first articles on stochastic systems in a random environment is

that of Eisen and Taineter [37]. Their model is a single-server Markovian queue

whose rates are modulated by a two-state process with negative-exponential inter-

transition intervals. The equilibrium state measures were computed via the solution

of a system of differential equations obtained, in part, from the Kolmogorov forward

equations. Though Eisen and Tainiter are given credit by Purdue [88] as being the

first to incorporate variable arrival and service rates into a queueing model, there

were others working concurrently on related issues. The queueing model described by

Avi-Itzhak [18] in the second of a two-part article is priority-based with heterogenous

arrivals, but with service rates chosen at random (i.e. according to a probability

distribution) at each arrival. This system also included server breakdowns, but

customers avoided being pre-empted by repeatedly choosing service times until a

sufficiently short service interval is obtained. This paper comes closest in spirit to
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the research that we present here, namely in that if preemptions were allowed, then

the system becomes a retrial system in a random environment subject to breakdowns.

The interesting feature of Leese and Boyd’s work [69] is that they present nu-

merical techniques for the computation of transient measures of a simple M/M/1

queue in which the service rate depends explicitly on time. On the other hand,

Yechiali and Naor [115] independently arrive at the same results for the same two-

state model as in Eisen and Tainiter’s paper in [37], after which Yechiali generalized

this work to the case of greater than two states in [114]. Neuts [79] developed tran-

sient as well as steady-state results for a Markov-modulated M/G/1 system in which

service rates are fixed for the duration of service. This model sets the paradigm –

namely that system transitions may not occur simultaneously – that governed his

later work [80] and the Markov-modulated queueing systems studied by other re-

searchers in recent years. Finally, Purdue [88] incorporated all of the pioneering

work heretofore mentioned into a rigorous analysis of the M/M/1 queue in a Marko-

vian environment in an article published in 1974. In it, he derived one of the earliest

results for the busy period4 when the Markovian environment possesses greater than

two states. There are also a number of other papers during this timeframe that

deal with service- or interarrival-time dependency on an external process; see [44]

for a look at how the random-environment mechanism evolved over its initial 20-year

period.

In 1976, Kogan and Litvin [56] considered finite-capacity queues in a two-state

Markov random environment and derived the associated stationary measures of mean

queue length and the probability of service failure via transforms. Although the

authors intended ‘service failure’ to mean a failure in throughput (i.e. probability of

a full queue), this was the first time that anyone had ever considered the probability

of an undesired event in random environments. In 1978, Neuts again published

two articles [84, 85] concerning random environments in queueing. The first in

4This denotes the contiguous period of time between two epochs in which the queue is empty.
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the series focused upon the same type of M/M/1 queue in a random environment

considered in [37]. This time, however, he considered the driving Markov chain in

the framework of the quasi-birth-and-death process (QBD) and then applied the

matrix-analytic treatment to compute the steady-state measures of interest. This

paper reflected, among other things, Neuts’ predilection for methods that allow for

the algorithmic computation of state measures in the elegant matrix-analytic fashion.

In the second half of this research (i.e., the second article), Neuts contributed two

important results. The first is that the equilibrium queue-length distribution at

the end of a sojourn is the same as that any time during the sojourn. The second

important development is that he derived steady-state results for the multi-server

queue M/M/c, which is the first time that anyone has accomplished any analysis for

a multi-server queue in a random environment.

During the latter part of the 1970s, a good degree of specialization took place in

the literature as various authors began to explore a range of issues that were already

known for queues with constant parameters. Many, if not the majority of these

earlier works were done with a type of single-server queue since the analyses were

rather involved even for the M/M/1 in a random environment. In 1984, Mokaddis,

Elias, and Metwally [77] studied the M/M/1 bulk-service system whose service and

arrival rates are subject to modulation by a bivariate Poisson process. A bulk-service

system is one in which an idle server will take exactly r ≥ 1 customers from the queue

and serve them en masse according to a randomly-assigned service time. Mokaddis,

Elias, and Metwally [78] likewise considered an M/M/1 system, but this time with

an unreliable server in a random environment. They derived the mean queue length

and probability of service failure using a partial-generating function technique.

Some authors extended their considerations to queues with arbitrary arrival

and/or service-time distributions. Baccelli and Makowski [20] in 1986 obtained sta-

bility conditions for the G/G/1 queue with service subject to a random process.

Their conclusion was that the workload in queue was larger for the corresponding

20



system with convex ordering than for one with a deterministic service rate based on

the average service time. Of significant notice is mention of the intensity-conservation

laws for queues that were derived by Miyazawa [76] in 1985, which were employed in

order to place bounds on the workload process. The authors also mentioned Rolski’s

article [93] in which the the stability conditions are derived for single-server queues

with an ergodically stable sequence of random variables (see [27] for a concise defini-

tion) forming the nonstationary input process. Rolski then proved that the average

waiting time is greater than that of the corresponding M/G/1 queue with the same

arrival and service intensities.

Much work had been accomplished for modulating processes of single-server

queues with exponentially-distributed input and service times. However, a number of

authors did consider service or arrival processes that were a deterministic function

of the states of the modulating process. In a very recent article, Mahabhashyam

and Gautam [73] studied a single-server Poisson-fed queue with infinite capacity

and FIFO discipline. Of significant note here are the assumptions that (i) if the

environment process is a continuous-time Markov chain (CTMC) {Z(t) : t ≥ 0},
then the service is performed at a rate of bZ(t) units of work per unit time; in

other words, the work is constant between transitions of the modulating CTMC,

and (ii) state transitions of the CTMC are permitted during service. They derived

the first and second moments of the service time using first-step analysis, with the

conclusion that the moments of service time are dependent upon the arrival process.

In order to compute the essential measures of queue length and waiting time5 the

authors resorted to a matrix-geometric approach. They completed their discussion

with applications to networks and CPU processor-sharing. The reader is referred to

[26, 91, 94, 109] for further reading.

5The distributions of queue length and waiting time cannot be obtained in closed form for this
system.
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As is usually the case, the derivation of steady-state measures abounds in the

literature due to complexity issues that plague the derivation of the time-dependent,

or transient measures of a queue, and especially one that is modulated by an external

process. In 1992, Lee and Li [68] considered a Markov-modulated Poisson-arrival

queue under overload control. That is, when the buffer content exceeds a certain

level, the arrival process is modified in order to mitigate any overflow condition.

The authors determined the transient distribution of queue length and the first

passage time to and from overload status for this model. They then determined the

optimal conditions under which the buffer content rises as slowly as possible and

decreases as quickly as possible. Finally, the authors studied how the properties

of the modulating Markov chain affect the transient behavior with regard to the

aforementioned state measures.

Markov-modulated queues using the matrix-geometric approach to queueing

developed by M.F. Neuts during the 1970s has created an entirely new discipline be-

cause of the fresh approach that it offers to existing problems that are intractible un-

der analysis by conventional means. In 2005, Mitrani [75] applied matrix-geometric

techniques to unbounded queueing systems in Markovian environments. His stated

goal was to obtain suitable approximations for the exact state measures of the system

under a heavy load and subject to an environment with many states. As the au-

thor explains, existing methods for computing exact measures suffer from numerical

instability and complexity due to such factors as ill-conditioned matrix terms. The

proposed method centered around a derived matrix expression Q(x) and a proposi-

tion concerning this matrix. In simple terms, the proposition states that the associ-

ated QBD for the Markov-modulated system is ergodic if and only if the number of

eigenvalues of Q(x) in the unit disk is equal to the number of states of the Markovian

environment process. From this, one can conclude that the joint distribution of the

queue size and environment is close to being geometrically distributed, with param-
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eter identical to the dominant eigenvector of Q(x). This, of course, leads naturally

to a method by which one may approximately ascertain the queue length.

It is worth mentioning that the notion of fluid queueing was being developed in

conjunction with the random environment concept. In fact, fluid queueing owes its

existence to the notion of a random environment since rates of input flow of a contin-

uous fluid are typically modulated by an external stochastic process.6 It is this con-

tinuous input that distinguishes the fluid system from the standard queueing system.

Nevertheless, it becomes apparent that the fluid queue may be (roughly) analogized

to an infinite-server queueing system that is Markovian if its rate-modulating process

is likewise Markovian. Kella and Whitt [50] uncover yet another analogy to standard

queueing in considering a fluid system, and, namely one with a type of compound

modulating process. The fluid queue alternates between ‘up’ and ‘down’ states; when

the system is up, the buffer content decreases according to one stochastic process

and when it is down, the buffer content increases according to another process. The

authors then demonstrated that the steady-state buffer content is directly related to

the virtual waiting time in a G/G/1 queue under certain assumptions.

Non-queueing systems in random environments have also been considered, and

although these types of environment-modulated processes are not the focus of this

research, the methods that they use to derive associated performance measures are

highly relevant. In 1981, Bourgin and Cogburn [24], discussed the probability of

passage into a closed set of absorbing states for a Markov chain in a random environ-

ment. Economou [36] took a much less esoteric approach in deriving the stationary

distributions for measures of a bivariate discrete Markov chain {(En, Xn) : n ≥ 0},
of which the first term is taken from the random environment {En : n ≥ 0}. A year

later, Hu [46] considered a Markov chain, a renewal process, and a random walk –

as well as a queue – in a random environment and established each of their state

space decompositions. In 1992, Korotaev and Spivak [57] considered finite-capacity

6The output rate is usually deterministic.
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queues with parameters that vary according to a semi-Markov process. Moreover,

the system state changes very slowly, with sojourn times in an inverse-reciprocal

relationship with a small positive ε. The authors obtained the distribution of the

number in the system via solution of coefficients in a series expansion.

Reliability analysis in queueing theory is a natural direction for the research

into failure models to take. We see the first set of such works for reliability systems

(mainly pioneered by Sztrik; see [10, 101, 103, 104, 105, 106]) scheduling, and finan-

cial stochastic systems and other logistic considerations appear in this context from

1989 onward; see [28, 33, 45, 47, 51, 86, 99] for specific examples.

Of immediate relevance is the topic of Markov-dependent single-server queues;

that is, those queueing systems whose exponential service and arrival processes de-

pend upon each other. The literature here is quite extensive, but does not necessarily

contain works in which the inter-arrival and service times are modulated ; nor do they

deal with server breakdowns. One of the more recent works in this area is by Adan

and Kulkarni [3], who study the limiting distributions of the waiting time and queue

length of a semi-Markov queue whose inter-arrival and service times are modulated

by the same discrete-time Markov chain. The assumptions are no more stringent

than that of the queue possessing the Markov property, which considerably sim-

plifies analysis. Hence, the importance of this work is that the authors consider

single-server Markovian queues with general distributions and subject to a random

environment.

2.4 Unreliable Queueing Systems in Random Environments

There does not exist an abundance of papers in the literature that deal with

queues in random environments and the possibility of service interruptions and/or

vacations, at least explicitly. The idea was recognized early, as Avi-Itzhak did in

his 1963 articles [17, 18], but obviously presented too many challenges at such an
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early time in the development of the subject. Regardless, failures are implicit in any

practical model of a real-world system, and so the foundations for the modulated

queue with failure were established almost as soon as the first articles on models

with process-dependent parameters. In 1963, Avi-Itzhak and Naor [19] describe

five different single-server queues that incorporate different assumptions about the

failure. The first failure model is based upon a stationary Poisson process with

no restrictions. The second model assumes that failures can occur only during a

busy period, the third assumes that failures occur when the system is nonempty,

the fourth assumes that repair takes place only at the request of a customer, and

the last assumes that failures occur only during idle periods. The repair and and

service times are both generally-distributed with density and finite second-moments

for each model.

While this work established a methodology for the incorporation of failure into

a model, some time passed before these were found in conjunction with variable

rates. In 1976, Kogan and Litvin [56] computed the asymptotic measures for a

queueing system in an unspecified random environment and subject to service fail-

ures. Mokaddis, Elias, and Metwally [77, 78] did the same for modified M/M/1

queues with Poisson-modulated rates. In 1999, Kroese and Nicola [59] considered

single-server (fluid and discrete) queues with alternating failures and Markov mod-

ulation of the Poisson arrivals and generally-distributed service rate. They employ

results on Markov-additive processes to obtain results on the optimal change of

measure, and the concept of the effective bandwidth is used to restrict the number

of environmental states that need to be included.

Finally, in 2005, Klimenok [54] studied what is essentially the first known

retrial queueing system in a random environment to appear in the open literature.

The model is comprised of a single-server with a batch Markovian arrival process

(BMAP) and semi-Markov service and retrial intervals. The process that defines the

random environment is a bivariate Markov chain {(rt, st) : t ≥ 0} with a finite state
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space. The random variables ηrt,st of customers served sequentially are influenced

by the random environment by definining them to be geometric with parameter qr,t.

The first term of the bivariate process controls a hybrid mechanism in which the

queue is determined to be either a retrial queue or a ‘system with waiting’ based on

its membership in a partition of the subsets {(r, ·)} of the state space. The second

term controls the parameters of the BMAP input and the semi-Markov intensities of

service and retrial. It is a synchronous random environment in the sense that it only

changes its state at service completions, thus obviating the need to consider changes

in the service rate during transitions of the random environment. The author then

employed an embedded Markov chain to evaluate the queue in steady-state, and

thus, derive the associated distributions of state measures as probability generating

functions.

Aside from [54], the literature concerning Markov-modulated retrial queueing

systems is, at best, sparse, and such a model that includes failures of the server(s)

does not exist to the author’s knowledge. Thus, it is the aim of this research to

supplement the retrial queueing literature with novel insights into the stability and

steady-state behavior of a class of models that has not been considered previously,

namely the M/M/1 and the M/G/1 versions of the unreliable retrial queueing system

in a random environment. Moreover, it is crucial that the analysis presented here be

useful for practical application, which suggests that our approach must be oriented

to computational considerations and algorithmic development. The matrix-analytic

theory turns out to be an ideal framework for this purpose. It is firmly grounded

in mathematical principles, and, yet, is easily utilized in the computational investi-

gation of queueing performance. In this dissertation, we seek to not only apply the

matrix-analytic methods, but also to extend their applicability to the larger classes

of level-dependent GI/M/1 and M/G/1-type systems.
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3. Preliminaries

Markov chains play a fundamental role in the theory of queues, and particularly

those that can be categorized as birth-and-death processes. These are continous-

time Markov chains (CTMCs) for whom transitions are allowed only to neighboring

states. Suppose that we are given a homogeneous CTMC {X(t) : t ≥ 0}, where X(t)

denotes the population at time t. The state space of this CTMC is S = Z+, which

are the nonnegative integers, and Q = [qij] is its infinitesimal generator . When the

population is i, that is X(t) = i, then the exponential rate of births is λi and the

rate of deaths is µi. In mathematical terms, this translates to

qi,i+1 = λi, if i ≥ 0

qi,i−1 = µi, if i ≥ 1

qij = 0 otherwise.

The transition rate diagram for a birth-and-death process is shown in Figure 3.1. As

a consequence of the definition of the transition rates, we may write the generator

Q in the following manner:

Figure 3.1 Transition rate diagram for a standard birth-and-death pro-
cess.
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Q =




−λ0 λ0 0 0 0 0 . . .

µ1 −(λ1 + µ1) λ1 0 0 0 . . .

0 µ2 −(λ2 + µ2) λ2 0 0 . . .

0 0 µ3 −(λ3 + µ3) λ3 0 . . .

0 0 0 µ4 −(λ4 + µ4) λ4 . . .

0 0 0 0 µ5 −(λ5 + µ5)
. . .

...
...

...
...

...
...

. . .




Let pj be the probability that j ∈ Z+ is the population of the system at steady-

state. The existence of the steady state distribution for a birth-death system hinges

upon the existence of a solution to the system of equations

pQ = 0, pe = 1,

where λi > 0, µi > 0, i ∈ Z+, and e is a row vector containing ones. If a solution

exists, it is given by

p0 =

[ ∞∑
j=0

pj

]−1

(3.1)

pi = πip0, i ≥ 1, (3.2)

where

πi =
i−1∏
j=0

λj

µj+1

, i ≥ 1.

The product form (3.2) of the steady-state probabilities, in particular, is a hallmark

of all birth-and-death processes. This relationship to state 0 is of fundamental im-

portance to these and other more generally-defined quasi-birth-and-death (QBD)

processes that we shall discuss next, and is the cornerstone of the matrix-analytic

approach as it pertains to these models.
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Many Markovian queueing systems are modeled as birth- and-death processes.

For example, the M/M/c and M/M/c/c queueing systems evolve as birth-and-death

processes. However, the simple birth-and-death model fails to account for multiple

interacting stochastic processes that might coexist in more complex systems, and

thus, a more general paradigm has become prevalent in the queueing community. In

this chapter, we review the rudimentary notion of the QBD and illustrate the tech-

niques with which one may easily analyze such stochastic processes. Subsequently,

we discuss the extension of this idea to non-Markovian processes that behave in a

similar manner, but nevertheless exhibit non-exponential random behavior. These

preliminary concepts are needed for the formal analysis of unreliable retrial queues

that operate in a randomly evolving environment.

3.1 Quasi-Birth-and-Death (QBD) Processes

The study of quasi-birth-and-death processes is inextricably tied to the matrix-

analytic approach of Neuts (see [81, 82, 83]). In contrast to the more conventional

z-transform approach used to compute the limiting distribution of such processes,

the matrix-analytic method takes advantage of a common structure that is shared

amongst a wide variety of seemingly unrelated models. Such general applicability

leads to an algorithmic approach. While this may seem to be a trade off, it soon

becomes apparent that the method allows for the solution of realistic systems with

significant levels of complexity.

Such tractability is a consequence of the fact that essential quantities, such as

those that exist in (3.2), may be represented as single matrix entities regardless of

the size or complexity of the model. This fact, when combined with the convenient

matrix-geometric distribution of the steady-state probabilities, such as that which is

embodied in (3.2), allows for the relative ease of the computation of the steady-state

performance measures for models that may be classified as QBDs.
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We shall next review basic definitions, concepts, and techniques of the theory

of quasi-birth-and-death (QBD) processes, all of which is founded upon the matrix-

geometric property of discrete- and continuous-time Markov chains. We shall initially

present basic concepts that fall within the framework of discrete-time QBDs. This is

done for two reasons. First is the fact that the properties of continuous-time QBDs

are derived from those of their discrete-time embedded Markov chains, which are

likewise QBDs. Second, probabilistic interpretations are more clearly understood

and applied for the discrete case by virtue of the fact that these are defined by

their transition probabilities. The important distinction is that which separates

level-independent QBDs from those that are level-dependent, the latter type being

not only more complex, but which also require a different set of methods for their

steady-state analysis.

3.1.1 Level-Independent Processes

A bivariate DTMC {(Xn, Yn) : n ≥ 0} is a QBD if its transition probability

matrix appears in block-tridiagonal form

P =




A1 A0 0 0 0 · · ·
A2 A1 A0 0 0 · · ·
0 A2 A1 A0 0 · · ·
0 0 A2 A1 A0 · · ·
0 0 0 A2 A1 · · ·
...

...
...

...
...

. . .




, (3.3)

where A0, A1, and A2 are square matrices whose dimensions are determined by the

structural properties of the system at hand. We further observe that the off-diagonal

blocks A0 and A2 contain only positive entries as they provide information about the

transition probabilities (or rates in the continuous-time model) of the process. Each

row of P is termed a level, which is comprised of related system states called phases.
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It is possible to transition in one step either to adjacent levels or to any other phase

within the same level, hence the term ‘quasi-birth-and-death’. Incidentally, the size

of the QBD blocks Aj, j = 0, 1, 2 corresponds to the number of phases per level. For

example, if the block size is M ×M where M is a positive integer, then there are

M2 phases, and vice-versa.

A QBD is termed level-independent or homogeneous if it exhibits an infinitely

repeating tridiagonal block structure such as the one represented in (3.3). Never-

theless, it is usually the case that the states that comprise level 0 may differ from

those at any other level. We therefore refer to these states as the boundary states

S(0) ⊂ S, where S is the state space of the entire QBD. A crucial point to be made

here is that the process

{(X( 0)
n , Y ( 0)

n ) : n ≥ 0} (3.4)

restricted to the boundary states at level 0 (otherwise known as the process at

level 0 under taboo of all other levels of the QBD) is itself a Markov chain with

invariant probability vector π0 and its own transition probability matrix (to be

defined later). The importance of the process restricted to level 0 is derived from its

role in determining the matrix-geometric distribution of the steady-state distribution

of the overall QBD, as hinted in the preface to this chapter.

The discussion that follows is drawn from [66], which consequently may be

referenced for proofs and other details that we do not present here. We begin with

the assumption of homogeneity. In order to adequately convey what is meant by

the term ‘matrix geometric’, we define the following. Let {(Xn, Yn) : n ≥ 0} be

a discrete-time level-independent QBD with transition probability matrix P and

a finite number of phases N > 0. We define the steady-state joint probabilities

πij, i, j ∈ Z+ to be the limiting values

πij = lim
n→∞

P {Xn = i, Yn = j}.
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Next, define π to be the row vector [pij]i,j∈Z+ such that π = [π00, π01, . . . , π10, π11, . . .].

It is a well-known fact that π, if it exists, is the unique solution to the system of

equations given by

πP = π , πe = 1,

where e is a column vector of ones.

We partition this vector according to levels of the QBD, which is to say that we

set π ≡ [π0,π1,π2, . . .], where πi = [πi 0, . . . , πiN ] for i ≥ 0. The matrix geometric

property of the steady state distribution is then expressed via the recurrence relation

πi+1 = π0R
i, (3.5)

where R is a matrix such that, for each i ≥ 0, Rjk (0 ≤ j, k ≤ N) records the

expected number of visits to state (i + 1, k) before returning to level i, given that

the process starts in (i, j). The matrix R is often referred to as the rate matrix since

it may be interpreted as the ‘rate of visit’ to level i + 1.

It is apparent from (3.5) that determining π0 and R is key to the computation

of the steady state probabilities for a given discrete-time QBD. It can be shown that

the restricted process (3.4) of the QBD is a positive recurrent Markov chain if, and

only if, the overall QBD process is likewise positive recurrent (see [66: Thm 5.3.1]).

The restricted process (3.4) possesses the transition probability matrix B +A0G and

the corresponding steady state vector π0. Consequently, the invariant probability

vector π0 may be determined in the usual way as the unique positive solution to a

linear system of equations as described in Theorem 3.1.

Theorem 3.1. The vector π0 is the unique steady state solution to the system given

by

π0(B + A0G) = π0, (3.6)

π0(I −R)−1 = 1. (3.7)
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Notice that solving the system (3.6) – (3.7) requires explicit determination of the

rate matrix R. One might attempt to solve the following matrix-quadratic equation

to obtain R, although this is not practical due to the computational burden.

Theorem 3.2. The rate matrix R is the minimal (positive) and unique solution to

the matrix quadratic equation

A0 + RA1 + R2A2.

It is clear that this criterion may fail to be of practical use for all QBDs, save

those that possess the smallest of block matrix orders. Hence, we must resort to an

algorithmic approach in order to obtain the rate matrix. To this end, we will now

define two other fundamental matrices.

The matrices U and G that we shall now define are important to the character-

ization of the steady-state distribution, and hence, to the development of algorithms

to find the rate matrix R. The (j, j′)-th element of the matrix G is given by

Gjj′ ≡ P (τ < ∞, Xτ = (i, j′) |X0 = (i + 1, j) ), (3.8)

where τ is a discrete random variable defined as the first passage time from level i+1

to level i. It may also be determined exactly as the solution to the matrix quadratic

equation

A2 + A1G + A0G
2 = 0, (3.9)

although, just as with (3.2), computational issues make this approach impractical.

The other matrix, namely U ≡ A1 +A0G, may be interpreted as being the transition

matrix of the QBD process restricted to level i until the first visit to i − 1. The

matrices R, U , and G can each be deduced from any of the others via the following

33



mathematical relationships:

U = A1 + RA2, (3.10)

R = A0(−U)−1, (3.11)

G = (−U)−1A2. (3.12)

Though rarely used to explicitly prove the positive recurrence of a QBD, Theorem

3.3 is of significant import to theoretical as well as computational considerations.

Theorem 3.3. The QBD process given by {(Xn, Yn) : n ≥ 0} is positive recurrent

if and only if the matrix G is stochastic.

Proof. If the matrix G were substochastic, then it must be true that, for some j ≤ N ,

we must have

N∑
i=1

Gij =
N∑

i=1

P (τ < ∞, Xτ = (l − 1, j)|X0 = (l, i) ) < 1,

which shows that, at best, the QBD is null recurrent. On the other hand, positive

recurrence requires that all such terms must equal unity, by definition of the matrix

G.

The stochasticity of G can often be used as a convenient stopping criterion for

numerical algorithms used to approximate the steady-state distribution of a QBD.

One may then determine the rate matrix R through the employment of equations

(3.10–3.12).

3.1.2 Level-Dependent Processes

A natural generalization of the discrete-time QBD model is to allow the blocks

of P to vary according to level. A QBD with such a characteristic is called level-
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dependent or nonhomogeneous, with a transition probability matrix represented by

P =




A
(0)
1 A

(0)
0 0 0 0 · · ·

A
(1)
2 A

(1)
1 A

(1)
0 0 0 · · ·

0 A
(2)
2 A

(2)
1 A

(2)
0 0 · · ·

0 0 A
(3)
2 A

(3)
1 A

(3)
0 · · ·

0 0 0 A
(4)
2 A

(4)
1 · · ·

...
...

...
...

...
. . .




. (3.13)

We may further relax the requirement that the off-diagonal blocks be square matrices,

or even that there must exist only a finite number of phases per level. Examples

of systems with level-dependent QBD representations abound in the literature. The

standard Markovian single-server retrial queue with independent retrials and no

buffer, for instance, has a level-dependent QBD representation that comes about

due to the dependence of the total retrial rate upon the level, or number of entities

attempting to reaccess the server.

It so happens that many basic facts concerning the steady-state distribution

of level-independent QBDs may be extended to the level-dependent case (see [66: p

262]). For other quantities that have resisted translation from the level-independent

case, such as a simple drift criterion, we may still resort to limiting processes taken

over levels of the QBD. Such methods are straightforward enough in practice, but

have proven to be quite difficult to make rigorous.

The classical definition of QBDs has recently evolved to include Markov chains

{ (X1
n, X2

n, . . . , XM
n ) : n ≥ 0} with three or more state variables whose transition

probability matrices assume the tridiagonal form. Choose one of the component

random variables with an infinite state space, say X1
n, and associate each of its pos-

sible states with levels of the QBD. This transforms the above multivariate process
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into the group-bivariate process,

{ (X1
n, (X2

n, . . . , XM
n ) ) : n ≥ 0},

which in turn allows the transition matrix to be represented in the usual manner by

a two-dimensional matrix in tridiagonal form. In this research, we will focus upon

what is called in [100] a tri-layered QBD, or a QBD representation of a stochastic

system with three state variables. The topic of multi-layered QBDs has only recently

begun to receive much attention, as the original definition of the QBD encompassed

tridiagonal-structured Markov chains of only two state variables, the first of which is

infinite-dimensional (the ‘level’) and the other, finite (the ‘phase’). It became clear

that the traditional QBD did not adequately fulfill every stochastic modeling task,

and, moreover, that limiting the scope of QBD processes to only two-dimensions is

rather restrictive.

An adequate understanding of the structure of a multi-layered QBD is crucial

to the task of evaluating the steady-state performance of the system under consid-

eration. Each so-called layer of the tri-layered QBD holds a particular significance

to its analysis: the lowest (scalar-entry) level, which we shall denote here by level 2,

is used in the numerical computation of various system measures. The middle layer,

or level 1 turns out to be critical to the determination of a closed-form stability

expression. The topmost layer, level 0, should exhibit the tridiagonal form if the

system is, indeed, a QBD.

Regardless of the number of layers involved, the matrix-geometric property for

(discrete-time) level-dependent QBDs is similar to that for level-independent QBDs,

with the exception that there is now a rate matrix R(i) that corresponds to each level

i ≥ 1. The entries of the matrix R(i) give the expected number of visits to level i

between successive visits to level i− 1. The vector π of equilibrium probabilities in
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this case satisfies the recurrence relation

πi+1 = πiR
(i+1), i ≥ 0. (3.14)

Accordingly, each level i ≥ 0 is associated to distinct U (i) and G(i) matrices that

obey relationships similar to those given in (3.10)– (3.12). The level-dependent

counterparts to the matrix quadratic equations (3.2) and (3.9) are

R(i+1) = A
(i)
0 + R(i+1)A

(i+1)
1 + R(i+1)R(i+2)A

(i+2)
2 , (3.15)

G(i+1) = A
(i+1)
2 + A

(i+1)
1 G(i+1) + A

(i+1)
0 G(i+2)G(i+1). (3.16)

As with level-independent QBDs, the positive-recurrence of a level-dependent

QBD is contingent upon the fulfillment of certain conditions by the process restricted

to level 0. Theorem 3.4, which appears in [25, 66], details these requirements, as well

as the subsequent matrix-geometric relationship between the resulting steady-state

probabilities.

Theorem 3.4. A continuous-time level-dependent QBD is positive recurrent if and

only if there exists a positive solution to the system of equations

π0(A
(0)
1 + A

(0)
0 G(1)) = 0, (3.17)

π0

∑
i≥0

∏

1≤k≤i

Rke = 1 (3.18)

In this case, the steady-state probability vector π = [π0,π1, . . .] is given by

πi = π0

i−1∏

k=0

Rk, i ≥ 0. (3.19)

Thus, we see that the fundamental results for level-dependent QBDs have close

analogues to those already derived for the level-independent case. Nevertheless, the
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non-homogeneity of the QBD over its levels contributes significant complexity to

algorithms devoted to the task of determining the equilibrium distribution of the

QBD. We shall review these algorithms in greater detail in Chapter 4.

3.1.3 Ergodicity of QBDs

In this section we review the conditions that guarantee ergodicity of a QBD,

beginning with a discussion of the requirements for a general DTMC over a countable

state space. The necessary and sufficient condition for the ergodicity of a DTMC

{Xn : n ≥ 0} with countable state space S is that the process must be aperiodic and

positive recurrent. We further assume that the QBD is irreducible or, equivalently,

that each state is reachable from all others via a finite number of transitions, a

characteristic that greatly simplifies the theoretical considerations that attend the

steady-state analysis.

Positive recurrence is a class property, which means that we shall define pos-

itive recurrence for a state i ∈ S. Let S1 be the time of the first transition of the

QBD process and let τi = min {n ≥ S1 |Xn = i} be the time of first passage into the

state i. The state i is then called positive recurrent if the following conditions hold:

(i) P (τi < ∞|X0 = i) = 1, (3.20)

(ii) E[ τi |X0 = i ] < ∞. (3.21)

A communicating class of a Markov chain is called positive recurrent if every member

of that class is so designated; thus, for an irreducible, positive recurrent Markov

chain, every state must be positive recurrent. The definition of positive recurrence

for a CTMC is analogous to that of the DTMC, with ‘max’ replaced by ‘inf’ in the

definition of the first passage time τi. It is worthwhile to note here that positive

recurrence is not necessarily shared between a CTMC and its embedded Markov

chain unless it possesses a finite number of phases per level. Since we will analyze
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such a finite-phase model, one may assume henceforth that the positive recurrence

of one implies the other.

A main focus of this research is to determine the long-run performance mea-

sures of a system that is ergodic. For the finite-phase, continuous-time QBD, the

proof of its ergodicity is equivalent to proving that its embedded chain is likewise

ergodic, which, in turn, is equivalent to proving that the embedded chain is positive

recurrent (since we assume aperiodicity). Note that the determination of ergodic-

ity is not contingent on the proof of the positive recurrence of every state of the

embedded DTMC. This is instead a consequence of the ergodicity property for an ir-

reducible and aperiodic Markov chain, which may be characterized as the geometric

convergence of the transient probabilities of the transition probability matrix (TPM)

to the steady-state probabilities; in other words, if P is the TPM and there exists an

invariant probability vector π of the chain, and, given the column vector e of ones,

P n → eπ

converges at a geometric rate, then the Markov chain is deemed ergodic. This fact

is presented as Theorem 1.1 of [74].

For Markov chains with a countable state space, the drift at state i is defined

as the quantity E[Xn+1 −Xn |Xn = i], where i, n ∈ Z+. A positive drift at i implies

that the process will tend towards higher-numbered states when in state i, while a

negative drift will imply exactly the opposite. The fundamental results that leverage

this concept of drift in order to assert the ergodicity of a Markov chain are Foster’s

criterion for stability [61] and Pakes’ Lemma [87]. Pakes’ lemma, in particular,

is well-known by virtue of its being the first simple criterion for determining if a

discrete-time Markov chain with a countable state space is positive recurrent. Simply

stated, it asserts the positive recurrence of a system that possesses negative drift over

a subset of its states. Let S be the countable state space of a DTMC denoted by
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{Xn : n ≥ 0}, and let ν : S → [0, ∞). A related quantity called the generalized drift

at state i of a DTMC is an average of weighted increments ν(Xn+1)− ν(Xn), n ≥ 0,

where ν(·) is a nonnegative, real-valued function on Z+. It is formally defined for a

given state i as

d(i) ≡ E[ν(Xn+1)− ν(Xn) |Xn = i]

=
∑
j∈S

pijν(j)− ν(i), i ∈ S. (3.22)

The function ν(i) is commonly termed a Lyapunov or potential function (see [41]),

which is a measure of some positive quantity, or ‘potential’, associated to a particular

state of a process with a countable state space. Thus, the drift may be equated to

the notion of a change in potential. Foster’s criterion, which we shall now state,

establishes the intuitive fact that a negative net potential means that the system

will not traverse its state space in an unbounded manner.

Theorem 3.5. (Foster’s Criterion) Let {Xn : n ≥ 0} be an irreducible DTMC on a

countable state space S. If there exists a function ν : S → [ 0, ∞), an ε > 0, and a

finite set H ⊂ S such that

|d(i)| < ∞ for i ∈ H, (3.23)

d(i) < −ε for i /∈ H, (3.24)

then {Xn : n ≥ 0} is positive recurrent.

The form of d(i) that is most relevant to our discussion of ergodicity of QBDs

is ν(i) = i. Indeed, Pakes’ lemma, which we shall next present, may be considered

as a special case of Foster’s criterion in which the Lyupanov potential is the identity

function.
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Theorem 3.6. (Pakes’ Lemma). Let the DTMC {Xn : n ≥ 0} defined on the state

space S = {0, 1, 2, . . .} be irreducible, aperiodic, and homogeneous. Let

d(i) = E[Xn+1 −Xn |Xn = i], i ∈ S

and suppose that the following conditions hold for each i ∈ S:

(i). d(i) < ∞,

(ii). lim sup
i→∞

d(i) < 0.

Then {Xn : n ≥ 0} is ergodic.

In the next chapter we employ Pakes’ lemma to describe the sufficient conditions

for the stability of level-independent QBDs, where the drift is the measure of the

average increment of a random walk over the state space of a QBD.

Pake’s lemma, as well as Foster’s criterion, is limited in that it is only an

expression of the sufficiency of a negative drift. In [95] there appear a number of

results that provide sufficient conditions for the non-ergodicity of a discrete-time

Markov chain, which means the contrapositive argument may be used to obtain the

necessary conditions for its ergodicity. Define pij as the (i, j)th component of the

transition probability matrix P of a generic DTMC {Xn : n ≥ 0} with a state space

equivalent to the nonnegative integers. It can be shown that the non-ergodicity of

such a Markov chain is predicated upon demonstrating that the function

ψi(z) =

(
zi −

∑
j≥1

pijz
j

)
/(1− z), i ≥ 0 and z ∈ [0, 1), (3.25)

is bounded from below by zero in some interval [c, 1) ⊆ [0, 1) and for some 0 < N ≤
i. The requirement on the value of z is guaranteed by the fulfillment of Kaplan’s

Condition, which is that there exists an ε ≥ 0, a positive integer N , and c ∈ [0, 1)

such that ψi(z) ≥ −ε for i ≥ N and z ∈ [c, 1). Furthermore, the connection of ψi(z)
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to drift is evident in the observation that

d(i) = lim
z→1−

ψi(z).

The preceding observations culminate in the result that is Theorem 3.7, which

first appeared in [95: Thm 1]:

Theorem 3.7. If the discrete-time Markov chain {Xn : n ≥ 0} satisfies Kaplan’s

Condition, d(i) < ∞ for all i ≥ 0, and there exists a positive number N such that

d(i) ≥ 0 for all i ≥ N , then {Xn : n ≥ 0} is not ergodic.

A direct proof of the applicability of Kaplan’s condition may be difficult, and

it is thus desirable to have alternative criteria on hand. The following theorem from

[95] provides the contextual framework in which the condition holds:

Theorem 3.8. Let P = [pij] be the transition probability matrix of a DTMC {Yn :

n ≥ 0} and define the sequences

δi =
∑
j≤i

pij(j − i)

εi =
∑
j>i

pij(j − i)

γi = δi + εi.

Next, consider the following statements:

1. There exists a k such that, for j < i− k and i > 0, pij = 0.

2. The sequence {δi : i = 0, 1, 2, . . .}, is bounded from below.

3. Kaplan’s condition holds.

4. The sequence {γi : i = 0, 1, 2, . . .} is bounded from below and limi→∞ pij = 0,

where j ≥ 0.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4).
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Condition (2), in particular, is well-suited to the task of demonstrating Kaplan’s

condition for processes, such as those of M/G/1-type, that allow any number of

positive increments (e.g., in system size), but only a limited number of decrements.

We may now proceed to discuss the conditions that establish the ergodicity

of level-independent QBDs. We note here that for the level-independent case, it is

sufficient to characterize the ergodicity of a QBD in terms of its transitions between

levels, since the phase space is identical for any given level. Thus, if one can prove

the existence of an embedded Markov chain whose state space consists of the integers

(and, therefore, the levels of the QBD) and whose behavior over levels is exactly that

of the underlying QBD, we may then apply the preceding theorems for the ergodicity

of a Markov chain.

The process that records transitions between levels bears a strong resemblance

to a one-dimensional random walk over the nonnegative integers with discrete (inde-

pendent) steps, or increments taken in the positive or negative directions. We shall

briefly discuss the development of this idea for a discrete-time, level-independent

QBD, based upon the presentation in [66: Thm 5.3.1]. Suppose that such a QBD

has the transition probability matrix (3.3). We begin by defining the integer-valued

random variable

Ln ≡ L0 +
n∑

k=0

δn, (3.26)

for which we assume that L0 ≥ 0. The increments of the random walk process

{Ln : n ≥ 0} are denoted by δn ∈ {−1, 0, 1} for transition epochs n ∈ Z+. Denote

the phase process of the QBD to be {φn : n ≥ 0} and consider the resulting Markov

chains

WL = {(Ln, φn) : n ≥ 0},
Wδ = {(δn, φn) : n ≥ 0}.
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The transition probabilities of Wδ are given by

P (δn+1 = −1, φn+1 = j | δn, φn = i ) = (A2)i,j (3.27)

P (δn+1 = 0, φn+1 = j | δn, φn = i ) = (A1)i,j (3.28)

P (δn+1 = 1, φn+1 = j | δn, φn = i ) = (A0)i,j. (3.29)

We note here that the increments of the random walk WL are dependent, as they

arise from the transitions of the underlying QBD, and thus indicate that the process

embedded at level jumps is not a Markov chain. We will deal with the dependency

issue later in this discussion; our first task, however, is to determine the steady-state

behavior of the increment process {δn}. Through aggregation of probabilities, it is

clear that the matrix A ≡ A0 + A1 + A2 contains the transition probabilities for

the phase process {φn}. Thus, by choosing as the initial probability vector for {φn}
the invariant probability vector α corresponding to A, we initialize the process in

steady-state, and thus, through association to the Markov chain Wδ, we may assume

that the increment process {δn} is likewise in steady-state.

Define δ to be the limiting random increment δ = limn→∞ δn. The process

Wδ, therefore, has the steady-state probability distribution vector [αA2, αA1,αA0].

The drift

d(i) ≡ lim
n→∞

E[δn | δn−1 = i]

associated to the random walk WL for all levels is thus given by

d(i) = (−1)αA2e + 0 ·αA1e + 1 ·αA0e (3.30)

= αA0e−αA2e.

Since the QBD is homogeneous in its levels, its drift terms d(i) are independent of

level i, and so, for the purpose of clarity, we define d̄ = d(i), i ≥ 1.
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As previously implied, the dependence of the increments δn precludes {Ln}
from being a Markov chain. It is therefore necessary to extract a suitable Markovian

subprocess of {Ln} by embedding at the appropriate time epochs. As stated in the

proof of [66: Thm 7.2.3], these epochs may be chosen as the times k0, k1, k2, . . . of

return of the process Wδ to its initial state (i.e., the first increment of the random walk

{Ln}) δ0. These instants are renewal epochs, a fact which allows us to declare that

the integer-valued process {Rn : n ≥ 0} embedded at such instants is a conventional

random walk with independent increments. Moreover, its behavior is identical to

that of the underlying QBD process until its first return to level 0, after which

{Rn} may or may not decrement to a negative level. We further observe that the

increments of Rn are given by

εn =
kn∑

j=kn−1

δj,

a fact that allows us to compute the drift at level i as follows:

d`(i) = E[εn |Lkn−1 = i] = (kn−1 − kn)d̄, (3.31)

the last equality being a consequence of the fact that the QBD is homogeneous in

levels. It is thus clear that d̄ = d(i) < 0 if and only if d`(i) < 0. Hence, by Pakes’

lemma, it becomes apparent that d̄ < 0 is sufficient to guarantee a finite expected

sojourn time from level i back to level i − 1 for each level i. Indeed, as is proven

in [66: Thm 7.2.4], the invariance of drift over levels of the QBD also makes this a

necessary condition. This enables us to state the following result:
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Theorem 3.9. Suppose that we are given an irreducible, discrete-time level-

independent QBD with a finite number of phases. The QBD is positive recurrent if

and only if

αA0e < αA2e, (3.32)

where α is the unique solution to αA = 0, αe = 1, and A ≡ A0 + A1 + A2.

We now give a formal presentation of the fundamental period as described in

[83: Sec 3.3], which has significant import in any discussion of the positive recurrence

of a QBD and, as we shall later see, a process of M/G/1-type. The concept of the

fundamental period is motivated by the notion of the busy period of a queue in the

classical sense of the phrase. The busy period is loosely defined as the first passage

time τb from the instant of the first customer arrival to the queueing system until

the first instant that the system again becomes empty, which, in terms of a QBD,

may also be interpreted as the first passage time from level 1 back to level 0. For

the M/M/1 or M/G/1 queues, the busy period corresponds to a contiguous interval

during which the server is processing work. However, this interpretation may not be

valid in more complex models, particularly those in which service may be interrupted

by failures or vacations. Hence, we generalize the original concept of a busy period

to encompass, not just the first-passage time just mentioned, but any period that

begins with the arrival of i + 1 customers to the system and ends with the system

size decrementing to i.

Using the notation of [82: Sec 2.2], we begin its formal definition by introducing

the first-passage times T (i + r, j; i, j′) from a level i + r, r ≥ 1 and Zi+r = j to level

i, i ≥ 0 and Zi = j′, where j′ is the first phase (hitting state) that the process

attains when it reaches level i. We likewise define the quantities V (i + r, j; i, j′)

of the number of transitions that comprise a first-passage time T (i + r, j; j′), with

the corresponding value for a fundamental period thus given by V (i + 1, j; j′). We

then denote the fundamental period by the stochastic time interval T (i + 1, j; i, j′).
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With these definitions in hand, we may finally introduce the following matrix of

probabilities

[Ĝ(i)
r (ν; x)]jj′∈S ≡ P {T (i + r, j; j′) ≤ x, V (i + r, j; j′) = ν} (3.33)

and its associated joint transform matrix

G̃(i)
r (s, z) =

∞∑
ν=0

zν

∫ ∞

0

e−sxG(i)
r (ν, x) dx. (3.34)

Let Ĝ(i)(ν; x) = Ĝ
(i)
1 (ν; x); the matrix

Ĝ(i)(x) ≡
∞∑

ν=0

Ĝ(i)(ν; x)

thus defined is called the matrix distribution of the fundamental period at level i.

From the definitions given above, one is able to infer the relationship of the busy

period to the fundamental period, which is that the matrix distribution of the busy

period is given by Ĝ(0)(ν, x). We also indicate the following equivalence (the matrix

G(i) is the level-dependent version of the matrix G defined in (3.8)):

G(i) = G̃(i)(0, 1), i ∈ Z+.

Combining this observation with Theorem 3.3 formally establishes the connection

between the fundamental period and the positive recurrence of QBDs.

If the QBD is level-independent, then the homogeneity of phases over all levels

guarantees that G(i)(ν, x) = G(j)(ν, x) for any i, j ∈ Z+. However, this is clearly not

the case for a level-dependent QBD, and so we must therefore differentiate between

the matrices G(i)(ν, x) based upon the starting level i. The conclusion that one may

draw from this discussion is that the distribution of the fundamental period varies

with the starting level for level-dependent M/G/1-type processes. Nevertheless, the
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fundamental period is a class property, even in the level-independent case, and thus

the conclusions drawn in [82: Sec 3.3] for the busy period likewise hold for the

level-dependent case.

Having asserted the relevance of the level-independent conclusions, the fol-

lowing theorem provides a means of computing the distribution of a fundamental

period for a QBD, which is a restatement in level-dependent terms of Lemma 3.3.2

and Theorem 3.3.1 in [82].

Theorem 3.10. The transform matrices G̃(i)(z, s), z ∈ [0, 1], s ≥ 0, are the minimal

nonnegative solutions to the matrix-quadratic equations

X(z, s) = zC
(i)
0 (s) + C

(i)
2 (s)X2(z, s), i ∈ Z+, (3.35)

where

C
(i)
0 (s) = (sI − A1)

−1A
(i)
2 and C

(i)
2 (s) = (sI − A1)

−1A
(i)
0 .

Proof. In the proof of [83: Thm 3.3.1], the sequence
{

G̃
(i)
n (z, s)

}
, n ∈ Z+, is con-

structed by letting X0(z, s) = 0 in the recursive formula

Xn+1(z, s) = zC
(i)
0 (s) + C

(i)
2 (s)X2

n(z, s).

It is subsequently proved that this nondecreasing sequence converges to the limit

given by

lim
n→∞

G̃(i)
n (z, s) = G̃(i)(z, s).

One may thus construct a simple algorithm based on the following procedure:

X0(z, s) = 0,

Xn+1(z, s) = zC
(i)
0 (s) + C

(i)
2 (s)X2

n(z, s), n ≥ 1. (3.36)
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It is also possible to obtain numerical approximations of the matrices {G(i), i ≥
0} via algorithms for the computation of the steady-state distribution of a (level-

dependent) QBD. Such algorithms usually produce the rate matrices R(i) (if not the

G(i) matrices themselves) as by-products of the procedure. One may then employ

the level-dependent version of the relationships (3.10) – (3.12) in order to obtain

G(i). We shall discuss such algorithms in detail in Chapter 4.

3.2 M/G/1-Type Processes

In the previous sections, we observed how the special structure of the QBD

facilitates the study of a large class of queues using a relatively modest collection of

methods. It stands to reason that a matrix-analytic analog to the QBD must surely

exist for classes of non-Markovian queues with highly-structured embedded Markov

chains as well. Indeed, such a class, epitomized by the classical M/G/1 queue, has

been defined, and a separate, but related set of analytical tools to those that apply to

QBDs have been discovered (see [82]). In this section, we review some of the currently

known solution techniques for the class of models known as M/G/1-type processes,

both in terms of computing a stability criterion and also in the numeric computation

of the steady-state distribution. Just as in previous sections of this chapter, we draw

a distinction between level-independent and level-dependent versions of this class of

models. A specific method discovered in this research for determining the ergodicity

of a level-dependent M/G/1-type process shall be presented in Chapter 5, which

addresses the M/G/1 retrial queueing system modulated by a random environment.

3.2.1 Markov Renewal Sequences and the M/G/1 Queue

The M/G/1 queueing system, as well as related systems of M/G/1-type, can-

not, by virtue of its non-exponential service distribution, be described as a CTMC,

nor does it possess an embedded DTMC at jump transitions in the manner of its

Markovian counterpart. In order to determine the appropriate embedded DTMC
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(i.e. to facilitate analysis of the non-Markovian system), we resort to the theory

of Markov renewal-processes. The idea is to construct a random bivariate sequence

{(Yn, Sn) : n ≥ 0}, or Markov renewal sequence (MRS), at suitable epochs Sn in

the system-size process {X(t) : t ≥ 0} of the M/G/1 queue in such a way that

{Yn : n ≥ 0} is a Markov chain, where Yn ≡ X(S+
n ). We may then study the

steady-state distribution of the embedded Markov chain {Yn} in order to study the

recurrence properties of the continous-time system.

We will not give the full details of the definition of a MRS here; for this,

we refer the reader to [61: p 479]. The key characteristic is that the successive

transitions of {(Yn, Sn)} should be independent of its history, or, in other words, the

Markov property should hold for the MRS. We next let τn = Sn+1 − Sn and define

the probabilities

Q∗
ij(x) = P {Yn+1 = j, τn ≤ x |Yn = i} i, j ∈ S.

The matrix Q∗(x) = [Q∗
ij(x)] is called the kernel of the MRS. The discrete random

variable N(t), which is the number of observations of the MRS up to time t, defines

a Markov renewal process {N(t) : t ≥ 0}. If N(t) records the number of transitions

up to time t, then the process

{X(t) ≡ YN(t) : t ≥ 0}

forms a semi-Markov process (SMP).

It should be emphasized that the sequence {(Yn, τn) : n ≥ 0} is also often

referred to as the MRS; nevertheless, the two definitions clearly uphold the same

idea with regard to the semi-Markov process that they commonly define. We now

focus on the utility of the MRS, which is embodied in the statement of the following

theorem which appears in [61: Thm 9.1] and is significant to the determination of

the stability condition for the non-Markovian system:
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Theorem 3.11. If {(Yn, Sn) : n ≥ 0} is a MRS, then the process {Yn : n ≥ 0} is a

DTMC with transition probability matrix given by Q∗(∞).

We therefore wish to obtain the matrix P ≡ Q∗(∞) and explicitly define those

conditions that guarantee the ergodicity of the embedded Markov chain, and thus

of the original queueing system.

Just as in Neuts [82], we use the standard M/G/1 queue with arrival rate λ and

with service distribution H(·) with average 1/µ as a simple example of a queueing

system whose embedded semi-Markov kernel demonstrates the aforementioned struc-

ture. Using the definitions given for Sn, Yn, and τn given in the previous paragraphs,

we will consider the Markov renewal process embedded at instants Sn just after ser-

vice completion and defined by the Markov renewal sequence {(Yn, τn) : n ≥ 0}. For

i, i′ ≥ 0 and for x ≥ 0, standard renewal arguments are used to obtain

Q∗
ii′(x) =





∫ x

0
λe−λuQ∗

1,i′(x− u) du, i = 0, i′ ≥ 0,

∫ x

0
e−λu (λu)i′−i+1

(i′ − i + 1)!
dH(u), i ≥ 1, i′ ≥ i− 1,

0, i′ < i− 1.

Define the following joint probabilities for x > 0 and ν = 0, 1, 2, . . .:

Bν(x) = P {ν arrivals occur during (0, τ ], τ ≤ x, |Y0 = 0} ,

Aν(x) = P {ν arrivals occur during (0, τ ], τ ≤ x, |Y0 > 0} .

It is evident from these definitions that

Bi′(x) = Q∗
0i′(x), i′ ≥ 0

Ai′−i+1(x) = Q∗
ii′(x), i ≥ 1, i′ ≥ 0.
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If we let x tend towards infinity and define

Bν = lim
x→∞

Bν(x), Aν = lim
x→∞

Aν(x),

we obtain the transition probability matrix P = Q∗(∞) of the embedded Markov

chain, which assumes the following structure:

P =




B0 B1 B2 B3 B4 · · ·
A0 A1 A2 A3 A4 · · ·
0 A0 A1 A2 A3 · · ·
0 0 A0 A1 A2 · · ·
0 0 0 A0 A1 · · ·
...

...
...

...
...

. . .




. (3.37)

As we shall soon see, processes with embedded transition probability matrices of

the canonical form (3.37) comprise a distinct class of stochastic processes with a

common set of steady-state solution methods.

3.2.2 Level-Independent Processes

Stochastic processes whose embedded Markov chains exhibit the characteristic

form (3.37) are termed level-independent processes of M/G/1 type. This is the sim-

plest manifestation of the M/G/1-type process in that the terms Ai, i = 1, 2, 3, . . .

do not vary based upon row membership. As the form of this matrix shows, the

embedded Markov chain may transition across any number of columns to the right

while being restricted to a single transition to the left. This is the reason why

M/G/1-type processes are often referred to as skip-free-to-the-left. Although for the

general M/G/1-type Markov chain it is possible to specify infinite-dimensional block

terms Aν and Bν for ν ≥ 0, we shall assume henceforth that the blocks are finite with

dimension m. Also, as with the definition of the QBD transition probability matrix,
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we denote the first coordinate of each state as the level and those that comprise the

remainder, phases.

For the sake of completeness, we present here a dual class of processes of

GI/M/1-type for which P takes the canonical form

P =




C0 D0 0 0 0 · · ·
C1 D1 D0 0 0 · · ·
C2 D2 D1 D0 0 · · ·
C3 D3 D2 D1 D0 · · ·
C4 D4 D3 D2 D1 · · ·
...

...
...

...
...

. . .




(3.38)

As in the case of processes of M/G/1-type, the structure of this matrix makes clear

the origin of the term skip-free-to-the-right. The analysis of such systems is consid-

erably easier than that of type M/G/1 due to the fact that the matrix-geometric

property holds for the steady-state probabilities of system size. It is interesting to

note that QBDs are skip-free-to-the-right and -to-the-left simultaneously, and are

consequently of both GI/M/1- and M/G/1-type. In particular, the classification of

QBDs as GI/M/1-type processes is consistent with the matrix-geometric nature of

their steady-state probabilities.

The (steady-state) theory of M/G/1-type processes has been well-established

for quite some time (see [82]) and applies to a large number of related systems. The

next class of processes that we discuss does not possess, at least to the same degree, a

generally-defined set of methods that allow for its easy solution. In what follows, we

will review the properties of level-dependent M/G/1-type processes that are relevant

to the determination of their stability and to the computation of their steady-state

distributions. This will later be used in the formulation of a new condition for the

stability of such systems in Chapter 5.
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3.2.3 Level-Dependent Processes

A natural generalization of the concept of M/G/1-type processes is that in

which the embedded transition probability matrix [Pii′ ] is dependent upon i, which

is the previous number in system. In this case, we obtain the following form of the

transition matrix:

P =




B0 B1 B2 B3 B4 · · ·
A

(1)
0 A

(1)
1 A

(1)
2 A

(1)
3 A

(1)
4 · · ·

0 A
(2)
0 A

(2)
1 A

(2)
2 A

(2)
3 · · ·

0 0 A
(3)
0 A

(3)
1 A

(3)
2 · · ·

0 0 0 A
(4)
0 A

(4)
1 · · ·

...
...

...
...

...
. . .




, (3.39)

in which the distributions of the increments of the process vary depending upon the

current number in system. We denote processes with embedded transition proba-

bility matrices of the form (3.39) level-dependent. Otherwise, we shall refer to the

process as being level-independent. As the reader may recall, an analogous distinction

was made in the case of QBDs, and which required a bit of effort in order to char-

acterize the stability conditions that prevailed in the more-general level-dependent

type of process.

3.2.4 Ergodicity Conditions

As hinted previously, there exists, for an embedded level-independent Markov

chain of M/G/1-type, a well-developed theory of ergodicity, as evidenced by the

many publications on the subject; see [8, 12, 13, 22, 67, 82, 89, 92], among others.

What follows here is a review of basic, but essential facts concerning the stability and

steady-state distribution of irreducible processes of M/G/1-type as it is presented

in [82: Chap 2]. We first consider the criteria that determine the ergodicity of the
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embedded Markov chain Q∗(∞). As noted by Neuts [82] and others, it is important

to recognize the fact that the ergodicity of the embedded chain is, in general, only

a necessary condition for the recurrence of the associated Markov renewal process

Q∗(·), as one must further stipulate that the mean increment of the MRP for any

given time interval x > 0 is finite. However, as in the case of the QBD, the ergodicity

of the embedded chain is also sufficient if the process has a finite number of phases;

e.g., a process modulated by a random environment with a finite state space. Since

we assume such a process in this dissertation, it becomes necessary only to ascertain

the conditions that guarantee the ergodicity of the embedded chain.

Central to this concept of the ergodicity of an M/G/1-type Markov chain is the

fundamental period, which was defined in Section 3.1.3 for the QBD. This quantity

is of paramount importance to the determination of the recurrence properties of the

states of any queueing system. Using our previous notation, let us now consider the

probabilities G(ν, x) = G1(ν, x). We then have the following relationship between

these matrices of mass-functions and the matrices Aν(x) of transition probabilities,

a result that appears in [82: p 80]:

Theorem 3.12. The matrices G(ν, x) satisfy the difference equations

G(1, x) = A0(x), G(ν, x) =
∞∑

k=1

Ak(x) ∗Gk(ν − 1, x), ν ≥ 2, (3.40)

where (·, ·, ∗) is the matrix convolution product defined in Appendix A, (1.4).

The preceding theorem makes rigorous the notion of the fundamental period as

potentially including one or more periods between transition epochs of the embedded

Markov chain.

We next define the familiar matrix Ĝ(x) of probability mass functions as

Ĝ(x) =
∞∑

ν=0

Ĝ(ν, x), x ≥ 0, (3.41)
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which thus satisfies the relation Ĝ(x)e ≤ e. The matrix Ĝ(x) again denotes the

distribution matrix of the fundamental period. As such, we may interpret Ĝ = Ĝ(∞)

as the matrix whose (j, j′)-th entry is the probability that the process will attain the

state (i, j′), given that it started in (i + 1, j). Also, as shown in [82: Sec 2.3], Ĝ is

the minimal nonnegative solution to the equation

Ĝ =
∞∑

ν=0

AνĜ
ν . (3.42)

The following Lemma is clear from the probabilistic interpretation of Ĝ and the

definition of recurrence:

Lemma 3.1. If the M/G/1-type process with the embedded Markov chain whose

transition probability matrix is given by Q∗ = Q∗(∞) is recurrent, then the matrix

Ĝ = Ĝ(∞) is stochastic.

Thus, it is necessary that Ĝ be stochastic in order for the process be recurrent.

Although we ultimately seek to define the necessary and sufficient criteria for positive

recurrence to hold, it is first necessary to define an attainable analytic condition that

is equivalent to the stochasticity of the matrix Ĝ.

It is generally known from Perron-Frobenius theory that a given square ma-

trix M is stochastic if and only if its maximum positive eigenvalue (i.e., its Perron

eigenvalue) sp(M) is equal to unity. A simple analytical condition that guarantees

the fulfillment of sp(M) = 1 has been derived in [82: Chap 3]. In order to state this

condition, we first define the matrix z-transform

A∗(z) =
∞∑

ν=0

Aνz
ν

and

β =
d

dz
A∗(z)

∣∣∣∣
z=1−

=
∞∑

ν=0

νAν ,
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where |z| ≤ 1. Suppose as well that π is the invariant probability vector associated

to the stochastic matrix A = A∗(1−). We may now state the following theorem (see

[82: Thm 2.3.1]):

Theorem 3.13. If the matrix A is irreducible, then the matrix G is stochastic if and

only if

ρ = πβe ≤ 1. (3.43)

Hence, the embedded Markov process Q∗ = Q∗(∞) is recurrent if and only if inequal-

ity (3.43) holds.

One must keep in mind, however, that Theorem 3.13 only guarantees recurrence

of the embedded Markov chain. Positive recurrence of a discrete-time Markov chain

{Xn : n ≥ 0} requires that for any initial state i, ξj = E[Tj |X0 = i] < ∞, where Tj is

the first time to reach the state j, and i 6= j. Since the transition probability matrix

of the embedded Markov chain Q∗(∞) is irreducible, the recurrence properties of

every state is exactly the same, and so it suffices to verify this condition for the

initial state 0. One may thus conclude that positive recurrence holds if and only if

∞∑
ν=0

νBν < ∞.

It is also shown in Section 3.2 of [82] that ρ = 1 corresponds to the null-recurrent

case. Taken together, these facts lead us to the following conclusion:

Theorem 3.14. Suppose that the matrix Ĝ that corresponds to the embedded Markov

process Q∗(∞) is irreducible. Then the process Q∗(∞) is positive recurrent if and

only if ρ < 1 and
∑∞

ν=0 νBν < ∞.

Since, by definition, the matrix β contains the conditional expectations of

the number of arrivals during a fundamental period of the embedded Markov chain

Q∗(∞), ρ may be interpreted as the expected number of arrivals during a funda-

mental period. It is intuitive that if this number exceeds unity, then the queue will
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tend to grow in the long run. This interpretation is essential to the formulation of

the stability criteria for level-dependent M/G/1-type queues.

This chapter has reviewed the fundamental concepts and definitions required

for the steady-state analysis of quasi-birth-and-death and M/G/1-type systems. The

material presented here is crucial to understanding the main results obtained in this

dissertation which are presented in the next two chapters. The next topic is the

formulation and steady-state analysis of the unreliable M/M/1 retrial queue in a

random environment, for which the material in Section 3.1 shall be relevant. Once

the results for the Markovian model have been established, then it will be shown

that a similar queueing model with generally distributed service requirements is a

process of M/G/1-type. This will subsequently allow the use of the theory and

methods described in Section 3.2. Results for system stability have likewise been

extended from the level-independent results of this chapter and will appear in the

subsequent chapters.
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4. Exponential Service Requirements

This chapter provides the mathematical model description and main results for a

single-server unreliable retrial queue in a random environment with exponential

services and Poisson arrival process. We first characterize the system as a quasi-

birth-and-death (QBD) process, which facilitates a matrix-analytic approach. Once

this has been accomplished, the theory of quasi-birth-and-death processes may be

brought to bear on the tasks of (1) determining the conditions under which a steady-

state distribution of orbit size exists, and (2) the computation of the approximate

steady-state distribution and related performance measures.

4.1 Model Description and Notation

Consider a single-server M/M/1 retrial queue in which the model parameters

(arrival, service, failure, repair, and retrial rates) are all modulated by an external

random environment (see Figure 4.1). The random environment is assumed to be

an irreducible continuous-time Markov chain (CTMC) with a finite state space S =

{1, . . . , m}, infinitesimal generator Q = [qij]i,j∈{1,...,m} and stationary probability

vector p = [p1, . . . , pm]. When the environment is in state j, customers arrive to

the system according to a Poisson process with rate λj > 0 while their service

requirements are exponentially distributed with rate µj > 0. When the server is

either idle or busy, breakdowns occur according to a Poisson process with rate ξj >

0, and the subsequent exponential repair time has rate αj > 0. Define the m-

dimensional vectors λ = (λ1, λ2, . . . , λm), µ = (µ1, µ2, . . . , µm), ξ = (ξ1, ξ2, . . . , ξm),

and α = (α1, α2, . . . , αm). Retrial customers attempt to regain access to the server

independently of all other customers at exponentially distributed time intervals with

rate θj > 0 when the environment is in state j. The vector of retrial rates is

θ = (θ1, θ2, . . . , θm). For a row vector x, we define the diagonal matrix of its elements

by ∆(x) = diag(x). Arrival, service, failure, repair, and retrial processes are assumed
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Figure 4.1 Graphical depiction of a single-server retrial queue.

to be mutually independent. Denote by R(t), the number of customers in orbit at

time t and let Z(t) be the state of the random environment at time t. The random

variable X(t) denotes the status of the server defined by

X(t) =





0 if the server is failed at time t

1 if the server is operational but idle at time t

2 if the server is operational and busy at time t

.

The continuous-time stochastic process, {(R(t), Z(t), X(t)) : t ≥ 0}, has state

space S = { (i, j, k) : i ∈ Z+, j ∈ S, k ∈ {0, 1, 2} }, where Z+ is the set of nonnegative

integers. It is clear from the foregoing definitions that the process is a multivariate

Markov chain with one infinite dimension, namely the number of customers in orbit.

Next, we show that {(R(t), Z(t), X(t)) : t ≥ 0} can be viewed as a tri-layered QBD

and exploit this structure to obtain the stability condition for the queueing sys-

tem and to obtain the approximate steady-state distribution and mean performance

measures.
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Let us denote the infinitesimal generator of {(R(t), Z(t), X(t)) : t ≥ 0} by Q∗.

Figure 4.2 shows scalar elements of the infinitesimal generator are arranged in m×m

diagonal sub-blocks corresponding to the m states of the random environment. In

this figure, we are restricted to displaying the entries of Q∗ when m = 3. Using

the ∆-terminology to denote diagonal matrices, we aggregate terms and rewrite the

level-1 generator in block form as follows:

Q∗
1 =




C0 ∆(ξ) ∆(λ) 0 0 0 0 · · ·
∆(α) D1 0 0 ∆(λ) 0 0 · · ·
∆(µ) 0 D2 0 ∆(ξ) ∆(λ) 0 · · ·

0 0 ∆(θ) C1 ∆(ξ) ∆(λ) 0 · · ·
0 0 0 ∆(α) D1 0 0 · · ·
0 0 0 ∆(µ) 0 D2 0 · · ·
...

...
...

...
...

...
...

. . .




, (4.1)

where the matrices D1, D2, and Ci, i ≥ 1 are given by

D1 ≡ Q−∆(λ + α) ,

D2 ≡ Q−∆(λ + µ + ξ) ,

Ci ≡ ∆(µ) + D2 − i∆(θ) , i = 1, 2, . . . .
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Visual inspection of (4.1) does not help us discern if Q∗ is a QBD. How-

ever, we observe that the diagonal blocks repeat in cycles of length three, namely

{Ci, D1, D2} as i → ∞. This suggests a higher-order aggregation of 3 × 3 block

entries (or 3m × 3m scalar entries), from which we obtain the top-level (0) matrix

form for the infinitesimal generator Q∗
0 :

Q∗
0 =




Γ0 Λ 0 0 0 · · ·
Θ1 Γ1 Λ 0 0 · · ·
0 Θ2 Γ2 Λ 0 · · ·
0 0 Θ3 Γ3 Λ · · ·
0 0 0 Θ4 Γ4 · · ·
...

...
...

...
...

. . .




, (4.2)

where, for i ≥ 0,

Γi ≡




Ci ∆(ξ) ∆(λ)

∆(α) D1 0

∆(µ) 0 D2


 , (4.3)

Θi ≡




0 0 i∆(θ)

0 0 0

0 0 0


 , (4.4)

Λ ≡




0 0 0

0 ∆(λ) 0

0 ∆(ξ) ∆(λ)


 . (4.5)

At this level of grouping, it is clear that Q∗ possesses the tridiagonal form of a QBD,

and thus, the following theorem may be stated:
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Theorem 4.1. The process {(R(t), Z(t), X(t)) : t ≥ 0} is a tri-layered, level-

dependent QBD.

As of the writing of this dissertation, known results for multi-layered and level-

dependent QBDs do not provide much guidance in determining stability conditions

for the retrial queueing model {(R(t), Z(t), X(t))}. Consequently, such theoreti-

cal conditions must be established before an attempt to quantify the performance

measures of the system can be made. In the next section, we give conditions for the

stability of general level-dependent, discrete-time QBDs. What is more, we will show

that these conditions depend upon the QBD structure, and not upon the number of

layers that it encompasses.

4.2 Stability and Steady-State Analysis

We now set out to prescribe the analytic conditions to guarantee the ergod-

icity of the unreliable retrial queueing system in a random environment. In what

follows, we present the formulation and subsequent proof of the conditions for the

ergodicity of general discrete-time level-dependent QBDs. The finite cardinality of

the phase spaces (namely the environment and server states) corresponding to each

level i allows the use of the discrete embedded chain at transitions of the original

continuous-time QBD process in determining conditions on the model parameters

that guarantee its stability. An explicit traffic intensity formula ρ, which does not

depend upon the initial level i, will then be derived for the M/M/1 model described

in this chapter.

As its name suggests, a (discrete-time) level-dependent QBD possesses drift

values that vary with the level of the process. This introduces a major difficulty in

that the nonstationary nature of the increments of the random walk Ln = Lkn ren-

der the epochs k1, k2, k3, . . . of the return of the process {δn} to δ0 non-regenerative.

Nevertheless, we shall show that there indeed exists a criterion based upon the level-
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dependent drift d(i) that enables the determination of the stability of the QBD.

Before presenting this criterion, however, we will re-introduce the random-walk pro-

cess and associated terminology as they pertain to a general level-dependent QBD.

We begin as before with an analysis of the random walk Ln = L0 +
∑n

k=1 δk at

steady-state, where each term is defined as in (3.26). The definition of the processes

WL and Wδ and the corresponding limiting increment δ are identical. This time,

however, the drift d(i) at each level i ≥ 1, where d(i) ≡ E[ δn |Ln−1 = i], varies

according to the current level i. We may thus consider d(i) to be the long-run drift

of the process restricted to level i, i = 0, 1, 2, . . .. Contrast this definition to the

analogous one for level-independent QBDs, whose homogeneity of drift over levels

allows us to state the correspondence d(i) = d(j) = d̄ for all i, j ≥ 0.

For a discrete-time, level-independent QBD with a finite number of phases, we

have seen that the related Markov chain WL has the finite steady-state distribution

(αA2e,αA1e,αA0e),

but its level-dependent counterpart

(α(i)A
(i)
2 e, α(i)A

(i)
1 e,α(i)A

(i)
0 e), i = 0, 1, 2, . . . ,

is now infinite-dimensional. Nevertheless, just as in the level-independent case, we

may evaluate the drift associated with level i, d(i) as

d(i) = α(i)A
(i)
0 e−α(i)A

(i)
2 e, i = 0, 1, 2, . . . , (4.6)

with α(i) being the minimal positive solution to the system of equations given by

α(i)A(i) = α(i), α(i)e = 1, i = 0, 1, 2, . . .
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and A(i) ≡ A
(i)
0 +A

(i)
1 +A

(i)
2 is the transition probability matrix of the QBD restricted

to level i. Note that, by virtue of the dependence of the drift upon level index i, that

Theorem 3.9 does not apply to the level-dependent case. Despite this, we may still

establish a single condition for ergodicity based upon the convergence of the sequence

{d(i)} as i grows without bound. The sufficiency of this condition is provided by

Pakes’ Lemma. However, the much more difficult task of demonstrating necessity

shall require the use of Theorem 3.7, after which we shall state the corresponding

result for continuous-time, level-dependent QBDs.

It is now apparent that we require a suitable embedded Markov chain. By

observing that the sequence {(Ln, Sn) : n ≥ 0}, which is embedded at level-jump

epochs Sn such that Ln = X+
Sn

, is a Markov renewal sequence, we show that {Ln} is

a Markov chain.

Lemma 4.1. Let {(Xn, Yn) : n ≥ 0} be a discrete-time, level-dependent QBD, and

let Sn denote the time of the nth level jump with S0 = 0. Define Ln = X+
Sn

, the level

of the QBD just after Sn. Then {Ln : n ≥ 0} is a Markov chain.

Proof. We shall first demonstrate that the increments of L are PH-distributed (see

Section A.2 of the Appendix). From previous discussions, it is clear that the matrix

A
(i)
1 , i ≥ 0, contains the probabilities for transitions within a given level i, while

A
(i)
0 + A

(i)
2 contains those for transitions out of level i conditioned upon any of the

states S
(i)
φ = {1, 2, . . . ,M} in the phase process {φ(i)

n : n ≥ 0} for level i. We may

thus represent the time the process L spends between transitions as the time until

absorption, where the absorbing state shall be denoted by 0 and the conditional

probabilities of absorption are given by the vector (A
(i)
0 + A

(i)
2 )e. Thus, the inter-

transition times are PH-distributed with the representation [γ
(i)
` , A

(i)
1 ], where γ

(i)
` is

an initial probability vector.

As a consequence of the PH-distributions of increments Li+1−Li according to

parameters that reside only within a particular level i, the Markov property holds
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over such increments, and thus

{(Ln, Sn) : n ≥ 0}

is a Markov renewal sequence. Thus, by Theorem 3.11, we have that {Ln} is a

Markov chain.

Finally, we define certain quantities that are needed for the proof of our main

theorem. The first is simply a restatement of the drift terms d(i) as ratios, or

expressions of traffic intensity ; see [83] for a detailed discussion of the traffic intensity

ρ(i).

ρ(i) =
α(i)A

(i)
0 e

α(i)A
(i)
2 e

, i = 0, 1, 2, . . . . (4.7)

In order to make this expression well-defined, we will exclude the case in which one

or more members of the sequence {A(i)
2 } has a zero eigenvector. It is easy to see that

(4.7) and the drift at level i are related by the expression

d(i) = (ρ(i) − 1)(α(i)A
(i)
2 e) i = 0, 1, 2, . . . . (4.8)

In order to simplify certain expressions that contain these terms, we define γ
(i)
j =

α(i)A
(i)
j e, i, j = 0, 1, 2, which will allow us to then rewrite (4.8) in terms of the

traffic intensity ρ(i) as

d(i) = (ρ(i) − 1)γ
(i)
2 , i = 0, 1, 2, . . . . (4.9)

We may now state and prove the following theorem.

Theorem 4.2. An irreducible, aperiodic, discrete-time, level dependent QBD is er-

godic if and only if

ρ ≡ lim
i→∞

ρ(i) < 1, (4.10)

with ρ(i) defined as in (4.7).
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Proof. We first assume that inequality (4.10) holds. By (4.9) we obtain

lim sup
i→∞

d(i) = (ρ− 1) lim sup
i→∞

γ
(i)
2 . (4.11)

Assume that ρ < 1. Since it is impossible to have an increment (a jump between

levels) of magnitude greater than unity in a QBD, the finite-increment stipulation of

Pakes’ Lemma (c.f. [87] and [61: pp 96–97]) is fulfilled. Next, we observe that since

γ
(i)
2 > 0 for all i, we likewise obtain that lim supi→∞ γ

(i)
2 > 0. Consequently,

lim sup
i→∞

d(i) = (ρ− 1) lim sup
i→∞

γ
(i)
2 < 0.

With the remaining condition of Pakes’ Lemma satisfied, we may conclude that the

QBD is positive recurrent if ρ < 1.

The proof of necessity hinges upon the fulfillment by the QBD of Kaplan’s

condition (see Section 3.1.3). Let z ∈ [0, 1) and define the functions

ψi(z) =

(
zi −

∑
j≥1

pijz
j

)
/(1− z), i ≥ 0 (4.12)

as in (3.25). It was shown in Section 3.1.3 that the equivalence d(i) = limz→1− ψi(z)

holds, and thus demonstrates the relationship of the function ψi(z) to the drift

condition of the Markov chain. It is also mentioned that the fulfillment of Kaplan’s

condition implies that the drift quantities d(i), i ≥ 0 are bounded below. If, in

addition, we have that d(i) ≥ 0 for every i past a certain level N , then it becomes

clear from this discussion that the Markov chain cannot be ergodic; this is the

reasoning behind Theorem 1 of [95], which we shall show holds under the hypothesis

of our theorem. In doing so, we thus prove the contrapositive of the statement of

necessity, which will complete our proof.

Assume that ρ ≥ 1 and that the system is stable; we need to show that the

QBD cannot be ergodic. Using the same reasoning as in the proof of sufficiency, we
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assert that d(i) < ∞ for each i ≥ 0. In order to prove that Kaplan’s condition holds,

we will derive the function

ψi(z) =

(
zi −

∑
j≥1

pijz
j

)
/(1− z), i ≥ 0, z ∈ [0, 1)

specifically for the Markov chain {(δn, φn) : n ≥ 0} consisting of the increments of the

random walk Ln (3.26). Thus, δn may assume any one of the three values {−1, 0, +1}
with the corresponding steady-state probabilities [ γ(0),γ(1), γ(2), . . .], where γ(i) =

[ γ
(i)
2 , γ

(i)
1 , γ

(i)
0 ]. This results in the following expression:

ψi(z) = − zi−1

1− z
[ γ

(i)
2 + (γ

(i)
1 − 1)z + γ

(i)
0 z2], i ≥ 1. (4.13)

We next investigate the behavior of the sequence of terms {ψi(ẑi) : i = 2, 3, . . .}
evaluated at the critical points ẑi for which ψi achieves a local minimum over the

interval (0, 1). After some tedious algebra, we obtain

ẑi =

(
1− 1

i

)
γ

(i)
2

γ
(i)
0

=

(
1− 1

i

)
1

ρ(i)
, (4.14)

and thus,

ψi(ẑi) =

(
1− 1

i

)i

γ
(i)
2

[
1− i

i− 1

]
. (4.15)

Because the probability of downward drift increases with the level, it is seen that

{γ(i)
2 } is nondecreasing, and thus, so is {ψi(ẑi)}. Consequently, it may be readily

verified that ψi(ẑi) ≥ 0 for i ≥ 2. We observe that, for each i ≥ 2, ψi(z) is non-

decreasing in z on the interval [ ẑi, 1). This, together with the continuity of ψi over

the interval [ 0, 1) further implies that, for each i ≥ 2, ψi(z) ≥ 0 for all z ∈ [ ẑi, 1).

Finally, we observe that {1/ρ(i)} is a nondecreasing sequence, which is also due to

the fact that drift decreases as the level increases due to the geometric rate of decay

of the steady-state probabilities in an ergodic Markov chain; thus, {ẑi} is nonde-

creasing and approaches 1/ρ as a limit. Thus, we conclude that ψi(z) ≥ 0 for all
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z ∈ [ 1/ρ, 1) and for each i ≥ 2. Hence, Kaplan’s condition is satisfied. To prove

the existence of a positive integer N such that d(i) ≥ 0 for every i ≥ N , we observe

that, for each ε > 0, we have ∆ρ = |ρ(i) − ρ| ≤ ε whenever i ≥ Nε for some Nε > 0.

By our hypothesis, ρ > 1, so we set ε = ρ− 1. Removing the absolute value in ∆ρ,

we obtain

1− ρ ≤ ρ(i) − ρ ≤ ρ− 1, i ≥ Nρ−1, (4.16)

which shows that ρ(i) ≥ 1 for i ≥ Nρ−1. By equation (4.8), we now see that d(i) ≥ 0

for i ≥ Nρ−1, and thus, by Theorem 1 of [95], we conclude that the QBD is not

positive recurrent, and hence not ergodic. Therefore, it is necessary that ρ < 1 for

ergodicity.

Although Theorem 4.2 applies to discrete-time systems, it may be easily ex-

tended to the continuous-time version using an embedded discrete-time Markov

chain. By considering the Markov chain embedded at level jump epochs in our unre-

liable retrial queueing model, we directly apply Theorem 4.2 to obtain the condition

required to ensure stability of the queueing system.

Theorem 4.3. An irreducible, aperiodic, continuous-time, level-dependent QBD is

ergodic if and only if

ρ ≡ lim
i→∞

ρ(i) < 1, (4.17)

with α(i) defined as the unique positive solution to the system of equations given by

α(i)A(i) = 0, α(i)e = 1, i = 0, 1, 2, . . . ,

where A(i) ≡ A
(i)
0 + A

(i)
1 + A

(i)
2 and e is a column vector containing ones.

Proof. This assertion is a direct consequence of Theorem 4.2 and Theorem 7.2.4 of

[66] (page 158).

Theorem 4.3 gives us the means by which we may characterize the stability for

the queueing process {(R(t), Z(t), X(t) : t ≥ 0)}.
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Theorem 4.4. The QBD with infinitesimal generator matrix Q∗ is positive recurrent

if and only if

ρ ≡ −e′ [ (Q−∆(α) )∆(ξ) + (Q−∆(α + ξ) )∆(λ) ] D−1
α e

e′ (Q−∆(α) ) (Q−∆(µ + ξ) ) D−1
α e

< 1, (4.18)

where Dα ≡ Q−∆(α + ξ) and e is a column vector containing ones as entries.

Proof. We begin with the derivation of the sequence {ρ(i) : i = 1, 2, . . .} for the QBD

with infinitesimal generator Q∗. In order to facilitate the computation of the limit

over i, we purposely exclude the degenerate situation in which α(i)A
(i)
2 e = 0, thus

making the sequence {ρ(i)} well-defined for each i. It is now possible to apply (4.7)

to the elements of the QBD defined in (4.2), upon which we obtain

ρ(i) =
−e′∆(λ) ∆(ξ) + (Q−∆(α) )(i∆(θ) + ∆(λ) )∆(λ + ξ) D−1

iθ )D−1
α e

e′ i∆(θ) (Q−∆(α) )(Q−∆(µ + ξ) )D−1

iθ D−1
α e

, (4.19)

where D−1

iθ = (Q − i∆(θ) − ∆(λ + µ + ξ) ). Using standard techniques for the

determination of limits of rational functions, the limit of (4.19) as i → ∞ gives us

(4.18), as desired. Note that this result implies the existence of the limit for all

choice of parameters, excluding those that result in the degenerate case discussed at

the beginning of this proof.

When there is only a single environment state, our queueing model corresponds

to the model of Kulkarni and Choi [62] with exponentially distributed service, in-

terfailure, and repair times. In such case, the expression for ρ in (4.18) reduces to

Equation (2.4) of [62].

4.3 Performance Measures

Approximate performance measures for the queueing system {(R(t), Z(t), X(t)) :

t ≥ 0} in steady-state may be obtained with numerical results for the steady-state
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distribution, which is given by the vector π = [π(i, j, k)], where

π(i, j, k) = lim
t→∞

P {R(t) = i, Z(t) = j, X(t) = k} , (i, j, k) ∈ S.

We begin with a discussion of the expected size of the retrial orbit R in steady-state,

which is given by

E[R] =
∞∑
i=1

i (πie). (4.20)

Since the steady-state probabilities correspond to each state of the trivariate repre-

sentation of the queueing process, we must aggregate these probabilities in such a

way as to obtain the probability of being in orbit; in other words, for the sequence

{pi : i ≥ 0} of steady-state probabilities of the orbit size i, we obtain pi = πie.

Many other performance measures may be obtained in much the same way as

was done for the expected size of the orbit. For instance, let us consider the limiting

proportion of time that the system is under repair. For each orbit size i, we must

find all possible phases for which X = 0; in this case, the long-run proportion of

time that the system is down is given by

P0 ≡ P (System is Down) =
∞∑
i=0

m∑
j=1

π(i, j, 0). (4.21)

We may therefore conclude that the proportion of time the server spends in state

k, k = 0, 1, 2, is given by

Pk =
∞∑
i=0

m∑
j=1

π(i, j, k), k = 0, 1, 2. (4.22)

The expected number in system E[L] and system sojourn time E[W ] follow

directly from the orbit-size probabilities and according to the following logic. We

base our approach to the computation of E[L] upon the observation that the system

size always equals the orbit size whenever the system is down or the server is idle.
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When the server is busy, one is added to the expected number E[R] in orbit. Thus,

we have

E[L] = E[R] (P0 + P1) + (E[R] + 1)P2

= E[R] + P2.

We next turn our attention to the computation of E[W ]. For work-conserving sys-

tems, the typical approach is to employ Little’s Law, which relates E[L] to E[W ].

It is given by the well-known formula

E[L] = λ̄E[W ], E[R] = λ̄E[WR],

where λ̄ is the average rate of arrivals to the system in steady state. Given the

equilibrium probability vector p = [pj : j = 1, . . . , m] of the random environment,

we obtain the average arrival rate λ̄ = pλ′e, and then solve for E[W ]:

E[W ] = E[L]/λ̄, E[WR] = E[R]/λ̄. (4.23)

4.4 Useful Algorithms

As a result of the recursive elements of many of its defining analytical results,

QBD methods do not readily admit closed-form solutions for the steady-state distri-

bution. There do exist certain classes of level-independent QBD processes for which

an explicit rate matrix R may be derived; for this, we refer the reader to [108]. Nev-

ertheless, the model that we study in this chapter is not amenable to the methods

described in [108], and so we must resort to algorithmic techniques for the compu-

tation of an approximate stationary distribution. In this section, we shall review

the algorithms of Bright and Taylor [25] and discuss their implementation. In the

section that follows, we shall compute some important measures of interest using the

approximated steady-state distribution.
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In discussing the algorithms of this section, we shall refer to the continuous-

time level-dependent QBD (LDQBD) as the bivariate process {(X(t), Y (t)) : t ≥ 0}.
Nevertheless, it should be clear to the reader that we may substitute for this a multi-

layered (i.e. n-variate for n ≥ 3) LDQBD process if so desired. It should also be

mentioned that the more general case of the LDQBD, in which the number of phases

Mi corresponding to level i for i = 0, 1, 2, . . . may vary, is assumed in [25]. We will

state Theorem 4.2 with this assumption intact. However, we will henceforth assume

that M = Mi = Mj < ∞ for every i, j ∈ Z+; in other words, the QBD will be

homogeneous in the number of phases at each level.

It has already been mentioned that the existence of a limiting distribution

hinges upon the behavior of the QBD at level 0. It is therefore fortunate that

the process restricted to level 0 of a continuous-time QBD is itself a CTMC that

possesses a time-to-absorbtion (transition to the next level) that is PH-distributed

with representation (α(0), Q(0)), where we define Q(0) ≡ A
(0)
1 + A

(0)
0 G(1), and α(0) is

the positive vector solution to the system

α(0)Q(0) = 0,
M∑

j=0

α
(0)
j = 1.

As always, we assume that there are M < ∞ states (phases) in level 0 and, further-

more, it is clear that Q(0) is the infinitesimal generator of the restricted process.

The statement of Theorem 3.4 asserts the necessary and sufficient conditions

for the ergodicity of a level-dependent QBD process. However, setting these criteria

to the task of obtaining a numerical steady-state distribution entails the solution of

a system of linear equations for each level i, which in turn would require explicitly-

defined G(i) matrices. Since QBDs that possess such explicitly-defined G matrices

are few and far between, this would, at best, be deemed an untenable approach.

Nevertheless, as in [25], Theorem 3.4 may serve as the basis for efficient algorithms

dedicated to obtaining the steady-state distributions of level-dependent QBDs.
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The conditions for the existence of a stationary distribution of a continuous-

time level-dependent QBD, which is that the vector of stationary probabilities π be

the unique solution to the system of equations given by (3.17) and (3.18), clearly

shows that the rate matrix R(i), i = 0, 1, 2, . . ., is key to its determination. The algo-

rithms developed by Bright and Taylor [25] are well-suited to the purpose of comput-

ing π using standard mathematical computing environments such as MATLABr, as

we have done for the unreliable retrial queue in a random environment. The funda-

mental idea behind this computational procedure is based upon the following result,

which is given as Lemma 1 in [25]:

Lemma 4.2. (Bright and Taylor) If the level-dependent QBD given by {(X(t), Y (t)) :

t ≥ 0} with state space { (i, j) : i ≥ 0, 1 ≤ j ≤ Mj} is positive recurrent, then the

sequence {Ri : i = 0, 1, 2, . . .} is given by

Ri =
∞∑

k=0

Uk
i

k−1∏
r=0

Dr−1−k
i+2r−k , i ≥ 0, (4.24)

where U r
i and Dr

i are Mi−1×Mi−1+2r and Mi−1×Mi−1−2r matrices respectively and

are given by the recursive expressions

U0
i = A

(i)
0 (−A

(i+1)
1 )−1 for k ≥ 1, (4.25)

D0
i = A

(i)
2 (−A

(i−1)
1 )−1 for k ≥ 1, (4.26)

U r+1
i = U r

i U r
i+2r [I − U r

i+2r+1Dr
i+3·2r −Dr

i+2r+1U r
i+2r ]−1, (4.27)

Dr+1
i = Dr

i D
r
i−2r [I − U r

i−2r+1Dr
i−2r −Dr

i−2r+1U r
i−3·2r ]−1. (4.28)

Lemma 4.2 is the focal point of a series of four algorithms whose overall ob-

jective is to compute an approximate steady-state distribution. One may, of course,

repeatedly apply Lemma 4.2 to find each rate matrix, but this is not necessary due
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to the following relationship:

A
(i)
0 + RiA

(i+1)
1 + Ri[Ri+1A

(i+2)
2 ] = 0, i ≥ 0, (4.29)

which allows Ri to be defined recursively as

Ri = A
(i)
0 [−A

(i+1)
1 −Ri+1A

(i+2)
2 ]−1. (4.30)

Thus, it is more efficient to obtain an approximation for RK−1 for some threshold

level K and then work backwards using equation (4.30) to obtain all of the remaining

rate matrices. Then, after solving the system in Theorem 3.1 to determine π0(K),

the remaining vectors πi(K), i > 0 may be obtained through successive applications

of equation (3.5) while normalizing the set of probabilities with each iteration i. This

notion provides the basis for Algorithm 1 in Figure 4.3, which is due to Bright and

Taylor [25]. This defines the overall algorithm that defines our method of approaching

the computation of the approximate steady-state probabilities. Several of the key

steps of this algorithm are addressed in further detail as sub-algorithms, each of

which likewise appeared in the article by Bright and Taylor [25].

Step (2) of Algorithm 1 is rather involved, as it requires an iterative application

of Lemma 4.2. The purpose of the algorithm is to obtain an approximation for RK−1

based upon some predefined tolerance level ε > 0 that dictates the number of terms

of the sequence {RK−1(N) : N ≥ 1} defined by

Ri(N) ≡
N∑

k=0

Uk
i

k−1∏
r=0

Dr−1−k
i+2r−k , i, N ≥ 0 (4.31)

that we must obtain for a given threshold K > 0. In other words, Ri(N) is the N +1-

th partial sum of (4.24). We thus iterate through successive values of RK−1(N), N ≥
1 until

|RK−1(N)−RK−1(N − 1) |∞ < ε, (4.32)
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Algorithm 1 (Bright and Taylor [25]):

1. Determine threshold level K.

2. Obtain RK−1 using Algorithm 2.

3. Obtain the remaining Ri, 0 ≤ i ≤ K − 2 using (4.29).

4. Solve the following for π0(K):

π0(K)(A(0)
1 + R0A

(1)
2 ), π0(K)e = 1.

5. for i = 1 : K

Compute πi(K) = πi−1(K)Ri−1.

Normalize {πk(K) : k = 0, 1, . . . , K} so that
∑K

k=0 πk = 1.

Figure 4.3 Top-level algorithm for computing the steady-state distri-
bution {πi(K) : 0 ≤ i ≤ K − 1}.

where |A|∞ = maxi,j (Aij), A ∈ Rm×n is the L∞ norm. This results in Algorithm

2, which is depicted in Figure 4.4. Since Algorithm 2 involves the computation of

the Uk
i and Dk

i+2k+1 matrices, which are requisite for obtaining the N-th partial sum

RK−1(N), we must define yet another subprocedure, namely Algorithm 3, in order to

wholly specify the procedure given in Algorithm 2. We shall discuss the elaboration

of this next task in the paragraph that follows.

For convenience, we now define the UD-pair UD(N, i) as the ordered pair

(Uk
i , Dk

i+2k+1) whose constituent matrices appear in Step (2) of Algorithm 2. Based

on the recursive definitions of these matrices in (4.25)–(4.28), it might seem that an

algorithm to compute the UD-pair need only consist of their repeated evaluation,

and, as such, is straightforward in execution. However, implementing these recursive

relations directly will most likely result in the repeated computation of the same

UD-pairs, which is clearly undesirable. The algorithm obtains and stores only those

pairs UD(η, ι) that are necessary to complete the recursion up to UD(N, i), N ≥
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Algorithm 2 (Bright and Taylor [25]):

1. Initialize the following variables:

Set N = 0.

Set U = U0
i , D = D0

i+2.
} Steps 1 and 2 of Algorithm 3.

Set Π = I (Identity matrix).

Set Ri(0) = U .

2. Increment N : N = N + 1.

3. Make the following assignments:

Π = D ·Π.

U = UN
i , D = DN

i+2N+1 . } Obtained from Algorithm 3

Ri(N) = Ri(N − 1) + U ·Π.

4. If |Ri(N)−Ri(N − 1)| ≥ ε, then go back to step (2).

5. Set R = Ri(N).

Figure 4.4 Procedure to compute the rate matrix RK−1 in step (2) of
Algorithm 1.

0. Fortunately, the relationships among UD-pairs are regular, and thus may be

represented pictorially as in [25: Fig 2]. The algorithm itself appears as Figure 4.5.

Finally, and perhaps most critically, is the question of how to choose the maxi-

mum level K so as to ensure the validity of the approximate steady-state probability

vector π(K). The obvious criterion would be to set K large enough so that the sum

of all steady-state probabilities is close to 1. Putting this idea into practice, how-

ever, is difficult if one desires an a priori answer – which is essential if one wishes to

avoid the brute-force alternative of running the algorithm until the desired accuracy

is achieved. What further makes this idea so unattractive is the explosion of the

number of UD-pairs – and hence matrix inverses – that one needs to compute as

the values of K increase. This situation is readily apparent if one observes the rapid
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Algorithm 3 (Bright and Taylor [25]):

1. if N = 0 then compute UD(0, i) and store.

2. for m = 0 to N

for n = K + (2N−n+1 − 1)2i

to K + (2N−n+1 − 1)2i+1 step 2n

Evaluate UD(m,n) and store.

3. Increment: N = N + 1.

4. Using all UD-pairs stored thus far, compute UD(N, i) and store it as
well.

5. Remove all stored UD-pairs except UD(n, i + (2N−m − 1)2j+1), j =
0, 1, . . . , N .

6. Return to Step 2 if Algorithm 2 has not yet terminated.

Figure 4.5 Procedure to compute UD(N, i) for the Algorithm 2 (c.f.
Fig. 4.4).

growth of the number of UD-pairs contained within the outer trapezoidal region of

the graph in [25: Fig 2]. In order to counter this difficulty, a heuristic of sorts is

presented in the form of Algorithm 4 in [25]. Simply put, it is a reformulation of

Algorithm 1 with the option to increase the value of K until πKe < ε, for some

arbitrarily chosen ε > 0. The algorithm is given in Figure 4.6.

As noted in [25], it is theoretically possible to have a level-dependent QBD

whose A
(i)
k matrices are not parametrically defined (that is, explicitly dependent

upon level i ≥ 0 and a finite number of parameters). In this case, the application

of the algorithms discussed in this section requires the input of a large number of

unrelated A
(i)
k matrices into the computer in order to reach the required tolerance

for the smallest steady-state probability. Even if this were done, however, the unpre-

dictability of the QBD generator blocks for a nonparametric QBD would make this
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Algorithm 4 (Bright and Taylor [25]):

1. Set Kprev = 0 and choose some tolerance ε > 0.

2. Set Knew > Kprev.

3. Compute the partial sum RKnew−1(4) of expression (4.24).

4. if |Ri(4)−Ri(3)| ≥ ε then go back to Step (2).

5. Compute RKnew−2, RKnew−3, . . . , RKprev using the recursive definition
(4.30) of the rate matrix Ri.

6. Solve the system

π0(Knew)(A(0)
1 + R0A

(1)
2 ) = 0, π0(Knew)e = 1.

7. for i = Kprev + 1 to Knew

πi(Knew) = πi−1(Knew)Ri−1.

Normalize π0(Knew), π1(Knew), . . . ,πi(Knew)

so that
∑i

k=0 πk(Knew)e = 1.

8. Set Kprev = Knew.

9. if πKnew(Knew)e ≥ ε then go back to Step (2).

10. Set K = Kprev.

Figure 4.6 Procedure to compute π(K) for some suitably-chosen
K > 0.

determination tricky at best. It is therefore recommended in [25] that, even in the

parametric case, one should take great care in determining stopping criteria when

applying the algorithms.

4.5 Busy Period Analysis

We approach the study of the busy period of the system, as in Section 3.1.3, in

terms of the fundamental period of the system. For the QBD process of this chapter,
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we may formally express the distribution function G◦(τ) of the busy period as the

m×m matrix

[G◦(τ)]kk′ = P{τ < ∞, (Y (τ), Z(τ),X(τ)) = (0, 1, k′)

. . . | (Y (0), Z(0), X(0)) = (1, 2, k)},

where k, k′ ∈ {1, . . . , m},

Y (t) =





R(t) + 1 if X(t) = 2

R(t) otherwise.

and (R(t), Z(t), X(t)) ∈ S.

A complicating issue is that failures of the server may preclude the servicing of

customers in a busy period; in addition, the server of a retrial queue may be up and

idle with customers still in orbit, which is likewise before the termination of the busy

period. Hence, it is more instructive to study the fundamental period corresponding

to level i, whose distribution (matrix) function is denoted by [G(i)(x)]jj′∈S, i ∈ Z+.

Application of the block matrix components (4.3) through (4.5) of the QBD

representation of the queue {(R(t), Z(t), X(t)) : t ≥ 0} to Theorem 3.10 results in a

matrix quadratic equation which, when solved, gives the transform G̃(i)(z, s) of the

matrix distribution of the fundamental period. For the purpose of simplification, let

χi(z, s) = G̃(i)(z, s).

We thus obtain the equation

χi(z, s) =
(
i∆(θ) C1 + χ2

i (z, s)C
(i)
2

)
Υ−1

i , (4.33)
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where, if we define Tλ = Q−∆(λ),

C1 =




0 0 (∆(α)− Tλ) (∆(ξ + µ)− Tλ)

0 0 ∆(α) (∆(ξ + µ)− Tλ)

0 0 ∆(µ) (∆(α)− Tλ)




C
(i)
2 =




0 ∆(ξ) ∆(λ) (∆(ξ + µ + α)− 2Tλ) . . .

0 ∆(λ) {T 2
λ − [∆(iθ) + ∆(ξ) ∆(µ + e)] Tλ

+ [∆(ξ + iθ) + ∆(ξ) ∆(α)−∆(λ) ∆(µ)]} . . .

0 ∆(ξ) {T 2
λ −∆(α + ξ + iθ) + ∆(λ) ∆(µ)} . . .

. . . ∆(λ)2 (∆(α)− Tλ)

. . . ∆(λ)2 ∆(α)

. . . ∆(λ) [T 2
λ −∆(α + ξ + iθ) Tλ + ∆(iθ) ∆(α)]




for i ≥ 0, and

Υi = −T 3
λ + ∆(α+2ξ+µ+iθ) T 2

λ

− [∆(α+ξ+iθ) ∆(ξ+µ)−∆(λ) ∆(µ)] Tλ

+ ∆(α) [i∆(θ) ∆(ξ+µ)−∆(λ) ∆(µ)] .

The matrix G of the fundamental period is thus the smallest positive solution to

(4.33). The necessary and sufficient conditions for the (exact) solvability of matrix-

quadratic equations may be found in [98]. However, due to the complexity of the

foregoing expression, a closed-form expression for the transform may not be derived,

and so we must resort to an approximation using either the simple algorithm (3.36)

or by obtaining the matrices through computation of the steady-state distribution

via the algorithms that were presented in Section 4.4.
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4.6 Numerical Illustrations

We conclude this chapter with numerical illustrations of the results we have

obtained for the queueing system {(R(t), Z(t), X(t)) : t ≥ 0}. Note that, in addition

to the overall traffic intensity ρ = limi→∞ ρ(i) which is derived from Theorem 4.2, we

may compute the traffic intensity ρj for the system when the environment is in state

j as follows:

ρj =
λjξj + αj(λj + ξj)

αj(µj + ξj)
, j ∈ S. (4.34)

The traffic intensity (4.34) may be obtained through simplification of the traffic

intensity model of [62] or by fixing the parameters of the model for m ≥ 2 and then

applying (4.7) and (4.10).

4.6.1 Example 1: Three-State Environment

We first consider a system operating in a three-state random environment

whose infinitesimal generator is given by

Q =




−1.0 1.0 0.0

1.6 −2.6 1.0

0.0 3.2 −3.2


 . (4.35)

Table 4.1 summarizes the system parameter values. Notice that the traffic intensity

for state 1 of the environment exceeds unity, and, thus, the system may experience

periods of instability whenever the environment is in state 1. Nevertheless, the

overall traffic intensity obtained by (4.7) and (4.10), is ρ = 0.4730 < 1, so it is

(overall) a stable system.

Table 4.2 lists the first 20 equilibrium probabilities of orbit size. A graphical

depiction of these probabilities – together with an additional 56 probabilities – is

shown in Figure 4.7. The probabilities represented in this figure were computed
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Table 4.1 Summary of parameters for 3-state example.
Environment State (j) λj µj ξj αj θj ρj

1 1.0 0.5 9.0 4.0 1.5 1.2895
2 0.1 0.8 2.0 7.0 3.0 0.7602
3 3.0 10.0 0.1 2.0 5.0 0.3218

Table 4.2 Steady-state probabilities of orbit size for
Example 1.

i pi i pi

0 0.02798110 11 0.03540854
1 0.03306333 12 0.03376359
2 0.03706997 13 0.03208472
3 0.03973863 14 0.03039734
4 0.04131836 15 0.02872157
5 0.04205032 16 0.02707325
6 0.04212703 17 0.02546462
7 0.04169928 18 0.02390498
8 0.04088593 19 0.02240120
9 0.03846185 20 0.02095816
10 0.03698781

using
∑3

j=1

∑2
k=0 π(i, j, k) for each i ∈ {0, 1, 2, . . .}. Note the geometric rate of

decay exhibited by the steady-state distribution, which is a defining characteristic

of an ergodic system.

The efficient recursive algorithms of Bright and Taylor [25], are useful for com-

puting the steady state probabilities of level-independent QBDs and may be adapted

to our model. Here we make use of Algorithms 1 through 4 of [25] to obtain (approx-

imate) steady-state probabilities from which we may compute queueing performance

measures. Let πi,j,k(t) = P (R(t) = i, Z(t) = j, X(t) = k) and define as before

π(i, j, k) = lim
t→∞

πi,j,k(t), (i, j, k) ∈ S.
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Figure 4.7 Pictorial representation of steady-state orbit-size
probabilities for Example 1.

The limiting probability that i customers are in the orbit is given by

πi ≡
3∑

j=1

2∑

k=0

π(i, j, k), i ≥ 0.

The steady-state expected number of customers in the orbit (E[R]) is approximated

(using the first 76 probabilities) by E[R] =
∑75

i=0 i πi ≈ 15.6684. We obtain the

overall system size (E[L]) by summing the expected number in orbit and the ex-

pected number in service, namely, E[L] = E[R] + P2 ≈ 16.0921, where P2 =
∑75

i=0

∑3
j=1 π(i, j, 2) ≈ 0.4237 is the long-run probability that the server is not failed

and busy. Applying Little’s law and the average arrival rate (λ̄ = λp ≈ 0.90558),

we respectively obtain the expected time spent in the retrial orbit and in the system

85



by

E[WR] = E[R]/λ̄ ≈ 17.302, E[W ] = E[L]/λ̄ ≈ 17.77.

4.6.2 Example 2: Seven-State Environment

We shall next consider a 7-state example that exhibits interesting non-intuitive

behavior as compared to the previous 3-state example. As before, we define the envi-

ronment by its infinitesimal generator One might observe that the rates of transition

to states 2 and 3 are larger (in general) than that of any of the other transitions.

From the table of system parameter values shown in Table 4.3, we may further ob-

serve that the queue is subject to heavy traffic when the environment is in states

2 and 3. The values of these parameters were set in order to observe the effects of

heavy traffic upon the stability of the system.

Q =




−7.6 2.0 3.0 1.0 1.0 0.1 0.5

0.5 −8.0 2.5 1.0 2.0 0.8 1.2

0.3 1.5 −0.8 1.0 1.0 1.0 1.0

2.0 3.0 5.0 −1.2 0.1 1.0 0.1

0.8 2.5 2.0 1.1 −7.9 0.7 0.8

1.5 1.0 1.6 1.2 0.5 −6.3 0.5

2.0 2.5 2.0 1.0 1.8 0.9 −10.2




. (4.36)

Next, through the employment of the algorithms of Bright and Taylor, we

computed the steady-state probabilities corresponding to the retrial queueing system

thus defined, from which we subsequently obtain the probabilities of orbit size (c.f.

Table 4.4).

The values of the various system performance measures is shown in Table 4.5.

From this we can see that, although the greater stability of the system with a 7-state

environment is not reflected in orbit or system sizes, it is definitely present in the
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Table 4.3 Parameters for the system of Example 2.

Environment Parameter ρj
State j λj µj ξj αj θj

1 3.0 7.0 0.5 2.0 1.0 0.5667

2 1.0 3.0 1.1 0.5 11.0 1.0488

3 3.0 12.5 1.5 0.5 2.0 0.9643

4 2.0 12.5 4.0 2.0 2.0 0.6061

5 2.0 4.5 1.0 6.0 5.0 0.6061

6 0.5 2.0 0.7 3.0 1.0 0.4877

7 0.5 4.0 1.5 0.5 0.5 0.6364

ρ 0.1915

Table 4.4 Steady-state probabilities for orbit sizes up to
and including i = 20 for the model presented
in Example 2.

i pi i pi

0 0.01470817 11 0.03366217
1 0.01887110 12 0.03322658
2 0.02262905 13 0.03261428
3 0.02577557 14 0.03185676
4 0.02832568 15 0.03098201
5 0.03032339 16 0.03001475
6 0.03182163 17 0.02897667
7 0.03287514 18 0.02788673
8 0.03353730 19 0.02676134
9 0.03385857 20 0.02561467
10 0.03388586
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Table 4.5 Performance measures for Examples 1 and 2.

Model
Performance Measure

Rmax
ρ

E[LR] E[L] E[WR] E[W ]

3-State 15.668 16.092 17.302 17.770 7 0.4730

7-State 19.550 19.825 7.680 7.788 10 0.1915

comparison between sojourn times. The values for times in orbit and in system are

less than half of what they are for the system with a three-state environment. The

interpretation that one may ascribe to this behavior is that system size is kept in

check – despite heavy traffic – by the relatively short times that the average customer

spends in orbit and in service.

4.6.3 Comparison to Simulated Data

It was mentioned at the beginning of this chapter that the effective times of ser-

vice, arrivals, breakdowns, repairs, and retrials will significantly affect how one mod-

els the retrial queueing system. Indeed, one must effectively assign PH-distributed

durations to these activities, the capability of which is not inherently present in the

graphical process simulator Arenar. As a consequence, two basic work-arounds need

to be employed depending upon whether the activity is a “service”-type activity

or an “arrival”-type activity. Let us first discuss the procedure for simulating the

modulation of arrivals to the system. Suppose that the environment has undergone

a transition from state i to state j. Simply changing the arrival rate will not work

since all scheduled arrivals at the previous rate need to be instantiated before the new

rate takes effect. This results in a backlog of customers from the arrival distribution

of the previous environmental state, thus invalidating the statistics for the process

under the new environmental state. It turns out that, in order to deal with instan-

taneous rate changes for arrivals, it is necessary to set the exponential arrival rate

to a constant λmax = maxi∈{1,...m} (λi), and then allow only the proportion λj/λmax

of customers to enter the system.
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Services, on the other hand, must be dealt with in a different manner since a

customer in service has already been instantiated, as opposed to arriving customers

whose future instantiation is affected by the exponential rate of arrival. These cus-

tomers must have their current service preempted and they must then be reassigned

a full exponential service time of rate µj (due to the memorylessness of the expo-

nential distribution). Breakdowns are treated as arrivals to the system while repairs

are dealt with in exactly the same way as services. The distribution of retrials is

perhaps the most difficult to simulate. If there are k customers in orbit during

the environmental transition, then there are two ways to proceed. One may either

(1) pick an estimated maximum orbit size kmax and allow the ratio θj/θmax of cus-

tomers from an exponential retrial rate of kmaxθmax to proceed, or (2) preempt every

customer in the retrial orbit and reassign the appropriate exponential inter-retrial

duration. Each method has its difficulties, but (2) may be the preferred option for

moderate-size environments due to the lack of the need to estimate a maximum orbit

size, thereby saving memory and eliminating the need to produce large numbers of

unneeded entities.

We will compare the average performance measures of 250 replications of Arena

simulation output to the corresponding steady-state performance measures predicted

by QBD approximation methods. The input of the simulated retrial queueing system

is a Markov-modulated Poisson arrival process with services and breakdowns that

are likewise modulated by the same three-state Markov chain whose infinitesimal

generator is given by

Q =




−0.2 0.05 0.15

0.3 −0.4 0.1

0.01 0.7 −0.71


 . (4.37)

Using vector terminology, we may describe the exponential rates of the modulated

parameters of the simulated model as λ = [0.3, 0.1, 3], µ = [0.5, 0.8, 10], and ξ =

[0.3, 1.5, 2.1]. The exponential rates α of repair and θ of retrial were assigned the
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same rates over all environment states; that is, αi = α = 2.0 and θi = θ = 1.0 for

each i ∈ S = {1, 2, 3}. Applying the values of these parameters to (4.18) results

in a value for the traffic-intensity factor ρ of 0.6630, which implies a stable, albeit

relatively high-traffic system.

Table 4.6 displays the output of the simulation runs versus the corresponding

measures computed from the steady-state system probabilities, which were, in turn,

computed using the Bright and Taylor algorithm.

Table 4.6 Simulation output versus QBD approximation.

Performance Measure Simulated QBD Approximation

E[ L ] 7.5678 7.5784
E[ W ] 11.6288 11.6346
E[ R ] 7.0551 7.0645
E[WR] 10.8402 10.8456
P (Busy) 0.5127 0.5140
P (Failure) 0.2920 0.2947

The results of this chapter enable us to characterize the explicit stability con-

ditions and steady-state distribution of the exponential model using the matrix-

analytic method. In addition, we have demonstrated the utility of matrix-geometric

algorithms in approximating the steady-state probabilities, together with numerical

results for the performance measures of the system. To this end, a simple criterion

for the ergodicity of general level-dependent QBDs was proved, thus contributing

to the understanding of the structure and behavior of this class of stochastic mod-

els. In the next chapter, a similar set of results will be established for a model with

generally-distributed service requirements. The analysis of the steady-state behavior

of the Markov-modulated M/G/1 retrial queue with unreliable server will have im-

portant implications, not only for the purpose of extending results to non-Markovian

unreliable retrial queues, but also for elucidating the common elements that it shares

with the Markovian model.
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5. General Service Requirements

This chapter extends the results of Chapter 4 to investigate an unreliable retrial

queue in a random environment wherein customers bring generally distributed ser-

vice requirements. Following a brief model description, we explicitly derive the

semi-Markov kernel corresponding to the Markov renewal sequence of orbit size and

environmental state considered just after the system returns to an up-and-idle state.

This will subsequently allow us to state specific conditions for the ergodicity of the

embedded Markov chain. The matrix-analytic procedure that we employ makes sig-

nificant use of the theory of Markov-modulated Poisson processes (MMPPs) whose

rudimentary concepts are summarized in Section A.3 of the Appendix.

5.1 Model Description and Notation

We define the retrial queueing system in a very similar manner to that of the

Markovian model, with the primary difference being the way in which the service-

time distribution is characterized. We again define the continuous-time, trivariate-

process description

{(R(t), Z(t), X(t)) : t ≥ 0},

where R(t) ∈ Z+ denotes the orbit size at time t, Z(t) ∈ S = {1, 2, . . . , m} denotes

the environmental state, and X(t) the server status (0 = failed, 1 = idle, and 2 =

busy). The arrival, retrial, failure, and repair processes are modulated by the Markov

chain {Z(t) : t ≥ 0} with environment-dependent rates again contained in the vectors

λ, θ, ξ, and α, respectively. The environment modulates the exponential rate

parameters of the input streams via the evolution of its own state transitions. In

other words, if the environment is in state k ∈ S, then the rate parameters are,

respectively, λk, θk, ξk, and αk.
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Customers bring a service requirement represented by a nonegative random

variable with a continuous distribution function that is nondefective and proper.1

Define the c.d.f. of service time as H(t) with finite mean 1/µ and denote its Laplace-

Stieltjes transform (LST) by

H̃(s) =

∫ ∞

0

e−stdH(t).

We shall assume that the service is not modulated by the random environment,

although this assumption can be relaxed for the case in which service times are

distributed as PH-random variables (see Appendix, Section A.2.1).

Customers arrive according to a modulated Poisson process, are serviced by a

single server, and then leave the system. Failures likewise occur as a Poisson process,

upon which the server is occupied for the entire length of an exponentially-distributed

repair period. A customer already in service when a failure occurs immediately

proceeds to the retrial orbit, from whence it attempts to reaccess the server at

random (exponential) intervals. Customers who arrive to a failed or busy server

likewise join the retrial orbit. The retrials themselves are conducted independently

of all others and succeed only when the server is up and idle. Departures from the

system, however, only occur when a customer is not interrupted by a failure during

the entire course of its service.

A major difference in the analysis of this system comes about as a result of the

Markov-modulated input streams (otherwise known as Markov-modulated Poisson

processes, or MMPPs; see Appendix, Section A.3). While these also pertain to the

QBD {(R(t), Z(t), X(t)) : t ≥ 0}, they are not directly considered by QBD methods

since they are implicit in the QBD structure of the generator (transition probability)

matrix representation of the system. Nevertheless, the MMPPs become a greater

1A probability distribution is nondefective if limx→∞ F (x) = 1 for a (in this case, continuous)
c.d.f F (·). The c.d.f is deemed proper if

∫∞
0

dF (x) = 1.

92



focus of emphasis as we must now directly account for their role in determining the

stability conditions of the queueing system.

5.2 Derivation of the Semi-Markov Kernel

Define Rn = R(T+
n ), Zn = Z(T+

n ), and Xn = X(T+
n ) at the instants T+

n , n =

0, 1, . . . ,∞ just after the server returns to up-and-idle status. The resulting discrete-

time process

{((Rn, Zn, Xn), Tn) : n ≥ 0} (5.1)

is then a Markov renewal process with kernel Q∗(x) given by

Q∗(x) =




B0(x) B1(x) B2(x) B3(x) B4(x) · · ·
A

(1)
0 (x) A

(1)
1 (x) A

(1)
2 (x) A

(1)
3 (x) A

(1)
4 (x) · · ·

0 A
(2)
0 (x) A

(2)
1 (x) A

(2)
2 (x) A

(2)
3 (x) · · ·

0 0 A
(3)
0 (x) A

(3)
1 (x) A

(3)
2 (x) · · ·

0 0 0 A
(4)
0 (x) A

(4)
1 (x) · · ·

...
...

...
...

...
. . .




,

and whose elements, for i ≥ 1, take the form

[
A(i)

ν (x)
]
jj′ = P{Rn+1 = i + ν − 1, Zn+1 = j′, τn+1 ≤ x

| Rn = i, Zn−1 = j}
(5.2)

and

[Bν(x)]jj′ = P{Rn+1 = ν, Zn+1 = j′, τn+1 ≤ x |Rn = 0, Zn = j}, (5.3)

given ν, n ∈ Z+, x ∈ R+, and i ≥ 1 (see [40: p 157]). Thus, for any regenerative cycle

(Tn, Tn+1] and for ν ≥ 0, the matrices A
(i)
ν (x) contain the probabilities that the orbit

size has increased by exactly ν − 1 if the initial orbit size is not zero. The matrix

Bν(x) contains the probabilities that ν customers arrive during a regenerative cycle
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that begins with an empty orbit. Because of the fact that the regenerative epochs

are the up-and-idle instants, Xn = 1 for all n ≥ 0, and so we will refer to the process

(5.1) in the abbreviated form

{((Rn, Zn), Tn) : n ≥ 0}.

It is thus implicit within this expression that Xn = 1 for all n ≥ 0.

We henceforth will refer to the regenerative cycles as cycles for the sake of

simplicity and define

τn ≡ Tn+1 − Tn, n ≥ 0.

In order to determine probabilities (5.2) and (5.3), we must first enumerate the

possible events that may occur during a cycle. We enumerate these events in a

similar manner to that which was done in [62]. When one takes into account the

fact that the repair distribution does not vary based upon whether the failure was

idle or active, we are left with the following scenarios:

1. The server fails before the arrival of a primary customer or a retrial

customer (if the orbit is nonempty).

2. A primary customer arrives before a failure or a retrial customer, but

the service is interrupted by a failure.

3. A retrial occurs before a failure or a primary customer arrival, but the

service is interrupted by a failure.

4. The service of a primary customer is non-interrupted by failure and is

completed.

5. The service of a retrial customer is non-interrupted by failure and is

completed.
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Define In ∈ {1, . . . , 5}, n ∈ Z+ as the first event that occurs during the cycle

(Tn, Tn+1]. We define the conditional probabilities

[Ψ(i)
ν (k, x)]jj′ =





P{Rn+1 = i + ν − 1, Zn+1 = j′,

τn+1 ≤ x | Zn = j, In = k, Rn = i}
if i > 0,

P{Rn+1 = ν, Zn+1 = j′, τn+1 ≤ x |
Zn = j, In = k, Rn = 0}

if i = 0,

and

P
(i)
k = P {In = k |Rn = i} , i ∈ Z+, k = 1, . . . , 5. (5.4)

Since the events {1, 2, . . . , 5} are mutually exclusive, we may utilize the law of total

probability to assert that

A(i)
ν (x) =

5∑

k=1

Ψ(i)
ν (k, x)P

(i)
k , (5.5)

Bν(x) =
5∑

k=1

Ψ(0)
ν (k, x)P

(i)
k , (5.6)

It thus becomes clear that, rather than dealing with scalar values, each A
(i)
ν (x) and

Bν(x) for i ≥ 0 are now block matrices of dimension m ×m (where m denotes the

number of states of the Markovian environment).

Our next step is to determine the probabilities P
(i)
k , i = 0, 1, 2, . . . , k =

1, . . . , 5. Let Fη(x) denote the c.d.f. corresponding to a random variable Xη ∼
PH(φη, Tη), where Tη = Q − ∆(η) (see Appendix, Section A.2). We now proceed

to derive (5.4) explicitly for the five events that were defined earlier.

Case In = 1: The server fails before the arrival of a primary customer or a retrial

customer (if the orbit is nonempty).
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Figure 5.1 Graphical depiction of an idle failure (Case 1).

For this case, we assume the mutual independence of the arrival, uptime, and retrial

processes. It is thus necessary to evaluate the probability

P
(i)
1 ≡ P

{
Xξ

n ≤ Xλ
n

}
P

{
Xξ

n ≤ X iθ
n

}
, i ∈ Z+,

where Xξ
n denotes the random uptime of the server, Xλ

n gives the interarrival dura-

tion, and X iθ
n is the period of time between retrials, given that there are i customers

in the retrial orbit, each of which is measured in the interval (Tn, Tn+1]. Since

Xξ
n ∼ PH(φξ, Tξ), Xλ

n ∼ PH(φλ, Tλ), and X iθ
n ∼ PH(φiθ, Tiθ), (1.15) gives us

P{Xξ
n ≤ Xλ

n} = 1 + (φξ ⊗ φλ)(−Tξ ⊕ Tλ)
−1(e⊗ Tλe) (5.7)

P{Xξ
n ≤ X iθ

n } = 1 + (φξ ⊗ φiθ)(−Tξ ⊕ Tiθ)
−1(e⊗ Tiθe). (5.8)

Multiplying (5.7) and (5.8) gives,

P
(0)
1 = 1 + (φξ ⊗ φλ)(−Tξ ⊕ Tλ)

−1(e⊗ Tλe), (5.9)

P
(i)
1 = P

(0)
1 [1 + (φξ ⊗ φiθ)(−Tξ ⊕ Tiθ)

−1(e⊗ Tiθe)], i ≥ 1. (5.10)

For arbitrary MMPP rate parameters a and b, define

P0(a, b) = P
{
Xa

n ≤ Xb
n

}
= 1 + (φa ⊗ φb)(−Ta ⊕ Tb)

−1(e⊗ Tbe).
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Figure 5.2 Graphical depiction of a failure that occurs during the
service of a (primary) customer.

It is clear from the preceding definition that

P0(a, b) = 1− P0(b,a).

When applied to equations (5.9) and (5.10), we obtain, respectively,

P
(0)
1 = P0(ξ,λ)

P
(i)
1 = P

(0)
1 P0(ξ, iθ).

Case In = 2: A primary customer arrives before a failure or a retrial customer, but

the service is interrupted by a failure.

This scenario differs from Case 1 in that we must compute the probability of a

failure occurring before the end of a service period, which is arbitrarily distributed.

Denote the random variable Xµ
n to be the total service time requested during a cycle

(Tn, Tn+1] of Type 2. We must state the probability of a failure occurring before the

end of a service period in the following manner:

P
{
Xξ

n ≤ Xλ
n + Xµ

n

}
= P

{
Xξ

n −Xλ
n ≤ Xµ

n

}
. (5.11)

Denote the difference Xξ
n−Xλ

n by Xξ−λ
n . We now seek to determine the distribution

function Fξ,λ associated to the random variable Xξ−λ
n . To this end, we condition on
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the arrival time of the primary customer and note, as in Figure 5.2, that if we are

given arrival time s > 0, then for any a > 0, Xξ−λ
n ≤ a if and only if it is no larger

than the interval [s, s + a]. This is given by the conditional probability

P
{
Xξ−λ

n ≤ a |Xλ
n ≤ Xξ

n

}
.

We must therefore compute the joint probability

P{Xξ−λ
n ≤ a , Xλ

n ≤ Xξ
n} =

∫ ∞

0

∫ s+a

s

dFξ(t) dFλ(s)

= [φξ(exp(Tξa)− I)⊗ φλ] (−Tξ ⊕ Tλ)
−1 (e⊗ Tλe) ,

from which we obtain

Fξ,λ(a) = P{Xξ−λ
n ≤ a |Xλ

n ≤ Xξ
n}

=
P{Xξ−λ

n ≤ a , Xλ
n ≤ Xξ

n}
P{Xλ

n ≤ Xξ
n}

=
[φξ(exp(Tξa)− I)⊗ φλ] (−Tξ ⊕ Tλ)

−1 (e⊗ Tλe)

1 + (φλ ⊗ φξ)[−Tλ ⊕ Tξ]−1(e⊗ Tξe)
. (5.12)

We next proceed to compute the probabilities of occurrence for Case 2. Once

again, invoking the mutual independence of the various MMPPs allows us to state,

for i ≥ 0, that

P
(i)
2 ≡ P {In = 2 |Rn = i} = P{Xλ

n ≤ Xξ
n}P{Xλ

n ≤ X iθ
n }P{Xξ−λ

n ≤ Xµ
n}. (5.13)

For a square matrix M , define the integral operator

Λ(M) =

∫ ∞

0

exp(−Mt)dH(t),
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where H(·) is the c.d.f. of service time. Using this notation, we expand (5.13) to

obtain

P
(i)
2 = P0(λ, ξ)P0(λ, iθ)

∫ ∞

0

Fξ,λ(u) dH(u)

= P0(λ, iθ)

(
φξ

∫ ∞

0

(exp(Tξu)− I) dH(u)⊗ φλ

)
(−Tξ ⊕ Tλ)

−1 (e⊗ Tλe)

= P0(λ, iθ)
(
φξ(Λ(−Tξ)− I)⊗ φλ

)
(−Tξ ⊕ Tλ)

−1 (e⊗ Tλe). (5.14)

Expression (5.14) may now be explicitly evaluated if the distribution function H(·)
of the service requirements is specified.

Case In = 3: A retrial occurs before a failure or a primary customer arrival, but the

service is interrupted by a failure.

This situation is very similar to that of Case 2, except that the arrival is a retrial

customer. If we define the random variable Xξ−iθ in an analogous manner to Xξ−λ,

then, for i ≥ 1,

P
(i)
3 ≡ P {In = 3 |Rn = i}

= P
{
X iθ

n ≤ Xξ
n

}
P

{
X iθ

n ≤ Xλ
n

}
P

{
Xξ−iθ

n ≤ Xµ
n

}

= P0(iθ,λ)
[
φξ (Λ(−Tξ)− I)⊗ φiθ

]
(−Tξ ⊕ Tiθ)

−1 (e⊗ Tiθe).

where Fξ,iθ(u) is the c.d.f. of the random variable corresponding to the difference

Xξ−iθ
n = Xξ

n −X iθ
n .

Case In = 4: The service of a primary customer is non-interrupted by failure and is

completed.
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Assume now that the end of service occurs before a failure. This may be expressed

for i ≥ 0 as

P
(i)
4 = P0(λ, ξ)P0(λ, iθ)

(
1− P

{
Xξ−λ

n ≤ Xµ
n

})

= P0(λ, iθ)

(
P0(λ, ξ)− φξ

∫ ∞

0

(exp(Tξu)− I) dH(u)⊗ φλ

)

× (Tξ ⊕ Tλ)
−1 (e⊗ Tλe)

= P0(λ, iθ)
[
P0(λ, ξ)− (

φξ(Λ(−Tξ)− I)⊗ φλ

)
(−Tξ ⊕ Tλ)

−1 (e⊗ Tλe)
]
.

Case In = 5: The service of a retrial customer runs to completion.

This is the retrial version of Case 4. Accordingly, for i ≥ 1, we obtain

P
(i)
5 = P0(iθ, ξ)P0(iθ,λ)

[
1− P

{
Xξ−iθ

n ≤ Xµ
n

}]

= P0(iθ,λ)

(
P0(iθ, ξ)− φξ

∫ ∞

0

(exp(Tξu)− I) dH(u)⊗ φiθ

)

× (Tξ ⊕ Tiθ)
−1 (e⊗ Tiθe)

= P0(iθ,λ)
[
P0(iθ, ξ)− (

φξ(Λ(−Tξ)− I)⊗ φiθ

)
(−Tξ ⊕ Tiθ)

−1 (e⊗ Tiθe)
]
.

In much the same case-by-case fashion, we will derive expressions for the gen-

erating functions A(i)∗(z) and B∗(z), i ≥ 0, |z| ≤ 1, for the block expressions of

the semi-Markov kernel G(x). Let us define the Laplace-Stieltjes transform (LST)

matrices

Ψ̃(i)
ν (k, s) =

∫ ∞

0

e−sx dΨ(i)
ν (k, x), (5.15)

and their z-transforms with respect to ν as

Ψ̃(i)∗(k, s, z) =
∞∑

ν=0

Ψ̃(i)
ν (k, s)zν . (5.16)
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For notational convenience, kernel expressions that do not depend upon the current

number in orbit do not carry the superscript i. In such cases, we write

Ψ(i)
ν (k, x) = Ψν(k, x)

Ψ̃(i)
ν (k, s) = Ψ̃ν(k, s)

Ψ̃(i)∗(k, s, z) = Ψ̃∗(k, s, z).

Define the Laplace-Stieltjes transforms of the kernel elements A
(i)
ν (x) and Bν(x) of

the Markov renewal process {((Rn, Zn), Tn), : n ≥ 0} as

Ã(i)
ν (s) =

∫ ∞

0

e−sx dA(i)
ν (x)

B̃ν(s) =

∫ ∞

0

e−sx dBν(x).

The entries of the transition probability matrix of the Markov chain {(Rn, Zn) : n ≥
0} may be obtained by taking the limit of the kernel entries as x →∞ such that

A(i)
ν = lim

x→∞
A(i)

ν (x) = lim
s→0

Ã(i)
ν (s) (5.17)

Bν = lim
x→0

Bν(x) = lim
s→0

B̃ν(s). (5.18)

Define the z-transforms

Ã(i)∗(s, z) =
∞∑

ν=0

zνÃ(i)
ν (s)

B̃∗(s, z) =
∞∑

ν=0

zνB̃ν(s).
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We then form the stochastic matrices A(i) and B as follows:

A(i) =
∞∑

ν=0

A(i)
ν = Ã(i)∗(0, 1), (5.19)

B =
∞∑

ν=0

Bν = B̃∗(0, 1). (5.20)

Now let Φη(ν, t) be the MMPP counting process defined in (1.11) of the Ap-

pendix. An important fact that we will frequently use is the following, which appears

in [40].

Theorem 5.1. Let η be the vector containing the exponential rate parameters of a

MMPP {Z(t) : t ≥ 0} with generator Q. Then

∞∑
ν=0

{∫ ∞

0

Φη(ν, t) dFη(t)

}
zν =

∫ ∞

0

exp((Q− (1− z)∆(η))t) dFη(t). (5.21)

Proof. The proof centers around the ability to interchange the integral and sum,

which is possible if and only if the function

∞∑
ν=0

Φη(ν, t) (5.22)

is uniformly convergent with respect to ν = 0, 1, 2, . . .. Consider the Poisson proba-

bility that n arrivals occur in the interval (0, t], which is given by

P (n, t) ≡ e−η t (η t)n

n!
, n ≥ 0, t ≥ 0. (5.23)

If we let the rate η vary so that P (n, t) = P (n, t, η) and take its derivative with

respect to η, we obtain

d

dη
P (n, t, η) = te−η t (η t)n−1

(n− 1)!

(
1− η t

n

)
.
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It is clear that the derivative will be negative for any η > 0 if we are given large

enough t. In other words, P (n, t, η i) will be decreasing for each i = 1, . . . m given

t ≥ t∗ for some t∗ > 0. Furthermore, if ηi > ηj, then P (n, t, ηi) < P (n, t, ηj), which

then proves that

P (n, t, ηmin) ≥ Φ(n, t), i = 1, . . . m, (5.24)

where ηmin = mini=1,...,m(ηi). We also point to the fact that

lim
t→∞

P (n, t, ηmin) = 0. (5.25)

Due to the verification of conditions (5.24) and (5.25), we may now invoke a well-

known theorem of Weierstrass in which these conditions are necessary and sufficient

for the uniform convergence of expression (5.22). Consequently, we may now inter-

change the operations of summation and integration in (5.21) to obtain

∞∑
ν=0

{∫ ∞

0

Φη(ν, t) dFη(t)

}
zν

=
∞∑

ν=0

(∫ ∞

0

P{N(t) = ν, Z(t) = j′ |N(0) = 0, Z(0) = j} dFη(t)

)
zν

=

∫ ∞

0

( ∞∑
ν=0

P{N(t) = ν, Z(t) = j′ |N(0) = 0, Z(0) = j} zν

)
dFη(t)

=

∫ ∞

0

exp((Q− (1− z)∆(η))t) dFη(t),

where the final equality follows from Lemma A.2 in the Appendix.

Since the only entity count that we require from any MMPP is that of customers

arriving to the queue, we use the shorthand notation Φ(ν, t) = Φλ(ν, t) (see (1.11)

in the Appendix) for the remainder of the chapter. In addition, define

Tλ(z) = Q− (1− z)∆(λ) ,
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which shall serve as a convenient shorthand in the complicated derivations upon

which we shall now embark.

It often becomes necessary during the computation of the semi-Markov ker-

nel to count the number of arrivals during repair periods and generally-distributed

service times. In order to facilitate this procedure, we define the matrices

Jη
ν (x) =

∫ x

0

Φ(ν, t) dFη(t), (5.26)

Jξ,λ
ν (x) =

∫ x

0

Φ(ν, t) dFξ,λ(t), (5.27)

JH
ν (x) =

∫ x

0

Φ(ν, t) dH(t), (5.28)

where η is the vector of rate parameters of a MMPP. We will likewise find it necessary

to utilize the LST J̃η
ν (s) of Jη

ν (x) and the corresponding z-transform matrix J̃η∗
ν (z, s),

which are defined as

J̃ η
ν (s) =

∫ ∞

0

e−sx dJη
ν (x), (5.29)

J̃ η∗(s, z) =
∞∑

ν=0

zν

∫ ∞

0

e−sx dJη
ν (x). (5.30)

The following theorem, which is a restatement of [82: Thm 5.1.5], allows the explicit

computation of (5.29) evaluated at s = 0:

Theorem 5.2. The matrix

J̃ η
ν (0) =

∫ ∞

0

Φ(ν, x) dFη(x)

is given by

J̃ η
0 (0) = (I ⊗ φη)(Tλ ⊕ Tη)

−1(I ⊗ Tηe) (5.31)
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J̃ η
ν (0) = DCν−1E, ν ≥ 1

where the matrices D, C, and E are given by

D = (I ⊗ φη)(Tλ ⊕ Tη)
−1(Tλe⊗ I)

C = (φλ ⊗ I)(Tλ ⊕ Tη)
−1(Tλe⊗ I)

E = (φλ ⊗ I)(Tλ ⊕ Tη)
−1(I ⊗ Tηe).

The transform matrix (5.30) may, in turn, be evaluated at s = 0 and z = 1 using

Theorem 5.1:

J̃ η∗(0, 1) = (I ⊗ φη)
∞∑

ν=0

zν

∫ ∞

0

Φ(ν, x)⊗ exp(Tηx) dx(I ⊗ Tηe)

∣∣∣∣
z=1

= (I ⊗ φη)

∫ ∞

0

∞∑
ν=0

zνΦ(ν, x)⊗ exp(Tηx) dx(I ⊗ Tηe)

∣∣∣∣
z=1

= (I ⊗ φη)

∫ ∞

0

exp(Q− (1− z)∆(λ) x)⊗ exp(Tηx) dx(I ⊗ Tηe)

∣∣∣∣
z=1

= (I ⊗ φη)

∫ ∞

0

exp ([Q⊕ Tη]x) dx(I ⊗ Tηe)

= (I ⊗ φη) (−Q⊕ Tη)
−1 (I ⊗ Tηe).

We will now complete the derivation of the semi-Markov kernel block entries A
(i)
ν

and Bν as defined in (5.17).

Case In = 1: The server fails before the arrival of a primary customer or a retrial

customer (if the orbit is nonempty).
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In this scenario the up-idle period ends with a failure, which is then followed by a

repair. No customers are processed during this cycle, and thus

Ψ0(2, x) = 0 for x ≥ 0.

For ν ≥ 1, the cycle commences with an up-idle period followed by a failure, and

then a repair period during which primary arrivals may occur. Hence, we employ

the renewal argument by conditioning upon the time of failure as follows:

Ψν(1, x) =

∫ x

0

Jα
ν−1(x− t) dFξ(t),

=

∫ x

0

∫ x−t

0

Φ(ν − 1, u) dFα(u) dFξ(t), (5.32)

where Jα
ν (x) is the matrix defined in (5.26). Since we require the derivative of (5.32),

it is necessary to reduce this expression to one that requires only a single integration.

We thus employ the technique of partial integration to obtain the equivalence

Ψν(1, x) = Jα
ν−1(x)− (I⊗φξ ⊗ φα)

∫ x

0

(Φ(ν − 1, t)⊗ exp(((−Tξ)⊕ Tα)t)) dt

× (I ⊗ exp(Tξx)e⊗ Tαe).

(5.33)

We next turn our attention to the evaluation of the LST of Ψν(1, x), Ψ̃ν(1, s),

which may be obtained as follows:

Ψ̃ν(1, s) =

∫ ∞

0

e−sx dΨν(1, x)

= J̃ α
ν−1(s)− (I ⊗ φξ ⊗ φα)

{∫ ∞

0

(
e−sxΦ(ν − 1, x)⊗ I ⊗ exp(Tαx)Tαe

)
dx

+

∫ ∞

0

e−sx

∫ x

0

Φ(ν, t)⊗ exp(((−Tξ)⊕ Tα)t) dt
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× (I ⊗ exp(Tξx)Tξe⊗ Tαe) dx

}

= J̃ α
ν−1(s),

(5.34)

from which we may compute the conditional probabilities Ψν(1,∞) of the occurrence

of ν − 1 arrivals to the retrial orbit in a cycle in which In = 1:

Ψν(1,∞) ≡ lim
x→∞

Ψν(1, x) = Ψ̃ν(1, s)

∣∣∣∣
s=0

= J̃ α
ν−1(0). (5.35)

It is possible to obtain a closed-form solution of (5.35) through the application of

Theorem 5.2. In this way, we determine that

Ψν(1,∞) = J̃ α
ν (0) =





(I ⊗ φα)(Tλ ⊕ Tα)−1(I ⊗ Tαe) if ν = 0

DCν−1E if ν ≥ 1

, (5.36)

where the matrices D, C, and E are given by

D = (I ⊗ φα)(Tλ ⊕ Tα)−1(Tλe⊗ I)

C = (φλ ⊗ I)(Tλ ⊕ Tα)−1(Tλe⊗ I)

E = (φλ ⊗ I)(Tλ ⊕ Tα)−1(I ⊗ Tαe).

Our final task is to derive the generating function

Ψ̃∗(1, s, z) =
∞∑

ν=0

Ψ̃ν(1, s) zν .
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From (5.34) we thus obtain

Ψ̃∗(1, 0, z) = z0 · 0 +
∞∑

ν=1

zν J̃ α
ν−1(0, s)

= zJ̃ α∗(0, s, z)

= (I ⊗ φα)z (−Tλ(z)⊕ Tα)−1 (I ⊗ Tαe).

Evaluating z at 1 gives

(I ⊗ φα) (−Q⊕ Tα)−1 (I ⊗ Tαe). (5.37)

The quantity (5.37), as well as its counterparts Ψ̃∗(k, 0, 1), k = 2, . . . , 5, will be re-

quired to derive the stochastic matrices (5.19) and (5.20).

Case In = 2: A primary customer arrives before a failure or a retrial customer, but

the service is interrupted by a failure.

We count arrivals during both of an interrupted service epoch and the repair period

that follows. Because the customer in service will inevitably join the retrial orbit,

the definition of Ψν(2, x) implies that

Ψν(2, x) = 0 for ν = 0, 1.

For ν ≥ 2, it is necessary to consider arrivals over both of a truncated service and

repair epochs, the sum total of which must equal ν − 2. Let Xξ−λ+α denote the

random variable for the interval of time during which such an interrupted service

and repair takes place. As in Case 1, we condition upon the arrival time t of the
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first customer arrival to obtain, for t ∈ (0, x) and ν ≥ 2, the expression

Ψν(2, x) =

∫ x

0

Jξ,λ,α
ν−2 (x− t) dFλ(t) (5.38)

=

∫ x

0

∫ x−t

0

Φ(ν − 2, u) dFξ,λ,α(u) dFλ(t),

where we denote the c.d.f. of the distribution of the combined interrupted service

and repair intervals by Fξ,λ,α(t) and define

Jξ,λ,α
ν (x) =

∫ x

0

Φ(ν, u) dFξ,λ,α(u).

In an analogous manner to Case 1, we arrive at the following expression for the

probability of the orbit size incrementing by ν − 1 during a cycle in which In = 2:

Ψν(2,∞) = Ψ̃ν(0) = J̃ ξ,λ,α
ν−2 (0) =

∫ ∞

0

Φ(ν − 2, x) dFξ,λ,α(x).

In order to evaluate this integral any further, we must determine the c.d.f. Fξ,λ,α(t)

of the sum Xξ−λ+α = Xξ−λ + Xα. This can be computed in the following manner:

Fξ,λ,α(x) =

∫ x

0

Fα(x− t)dFξ,λ(t)

= Fξ,λ(x)− (φα ⊗ φξ ⊗ φα)

∫ x

0

exp(((−Tα)⊕ Tξ)t)⊗ I dt

× [
exp(Tαx)e⊗ (−Tξ ⊕ Tλ)

−1(e⊗ Tλe)
]

= Fξ,λ(x)− (φα ⊗ φξ ⊗ φα)

×
{[

(exp(((−Tα)⊕ Tξ)x)− I ⊗ I)
]⊗ I

}

× [
exp(Tαx)e⊗ (−Tξ ⊕ Tλ)

−1(e⊗ Tλe)
]
. (5.39)
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From here, we proceed directly to the computation of the z-transform Ψ̃(i)∗(2, 0, z)

evaluated at z = 1. As in Case 1, we begin with the definition of the z-transform to

obtain

Ψ̃(i)∗(2, 0, z) =

[
0 · z0 + 0 · z +

∞∑
ν=2

zν J̃ ξ,λ,α
ν−2 (0)

]
= z2J̃ ξ,λ,α∗(0, z)

=

{
(I ⊗ φξ ⊗ φλ)

[
z2(−Tλ(z)⊕ Tξ)

−1 ⊗ I
]
[I ⊗ (Tξ ⊗ I)]

}
/P0(λ, ξ)

− (I ⊗ φα ⊗ φξ ⊗ φα)

{[
z2(−Tλ(z)⊗ I ⊕ Tξ)

−1 ⊗ I
]

× {
(I ⊗ (−Tα)e⊗ (I ⊗ I)) + (I ⊗ e⊗ (Tξ ⊗ I)) + (I ⊗ Tαe⊗ (I ⊗ I))

}

− [
z2(−Tλ(z)⊕ Tα)−1 ⊗ (I ⊗ I)

]
(I ⊗ Tαe⊗ (I ⊗ I))

}
(−Tξ ⊕ Tλ)

−1(e⊗ Tλe).

Case In = 3: A retrial occurs before a failure or a primary customer arrival, but the

service is interrupted by a failure.

We now assume that a failure occurs during the service of a retrial customer, and thus

the current orbit size i does not increment by one at the failure epoch. Therefore,

Ψ
(i)
0 (3, x) = 0 and, for ν ≥ 1,

Ψ(i)
ν (3, x) =

∫ x

0

Jξ,iθ,α
ν−1 (x− t) dFiθ(t) (5.40)

=

∫ x

0

∫ x−t

0

Φ(ν − 1, u) dFξ,iθ,α(u) dFiθ(t),

where we denote the c.d.f. of the distribution of the interrupted service and repair

interval by Fξ,iθ,α(t) and define

Jξ,iθ,α
ν (x) =

∫ x

0

Φ(ν, u) dFξ,iθ,α(u).
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With this established, it is a simple matter to adapt the results of Case 2 in making

following statements, the first being

Ψν(3,∞) = Ψ̃ν(3, 0) = J̃ ξ,iθ,α
ν−1 (0) =

∫ ∞

0

Φ(ν − 1, x) dFξ,iθ,α(x),

where the c.d.f. Fξ,iθ,α(x) of the interrupted service and repair distribution is given

by

Fξ,iθ,α(x) =

∫ x

0

Fα(x− t)dFξ,iθ(t)

= Fξ,iθ(x)− (φα ⊗ φξ ⊗ φα)

×
{[

(exp(((−Tα)⊕ Tξ)x)− I ⊗ I)
]⊗ I

}

× [
exp(Tαx)e⊗ (−Tξ ⊕ Tiθ)

−1(e⊗ Tiθe)
]
. (5.41)

The z-transform expressions Ψ̃(i)∗(3, 0, z) may likewise be computed as

Ψ̃(i)∗(3, 0, z) =

[
0 · z0 +

∞∑
ν=1

zν J̃ ξ,iθ,α
ν−1 (0)

]
= zJ̃ ξ,iθ,α∗(0, z)

=

{
(I ⊗ φξ ⊗ φiθ)

[
z(−Tiθ(z)⊕ Tξ)

−1 ⊗ I
]
[I ⊗ (Tξ ⊗ I)]

}
/P0(iθ, ξ)

− (I ⊗ φα ⊗ φξ ⊗ φα)

{[
z(−Tiθ(z)⊗ I ⊕ Tξ)

−1 ⊗ I
]

× {
(I ⊗ (−Tα)e⊗ (I ⊗ I)) + (I ⊗ e⊗ (Tξ ⊗ I)) + (I ⊗ Tαe⊗ (I ⊗ I))

}

− [
z(−Tiθ(z)⊕ Tα)−1 ⊗ (I ⊗ I)

]
(I ⊗ Tαe⊗ (I ⊗ I))

}
(−Tξ ⊕ Tiθ)

−1(e⊗ Tiθe).

Case In = 4: The service of a primary customer is non-interrupted by failure and is

completed.
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Conditioning on the first arrival time, we obtain the following for ν ≥ 1, where JH
ν (·)

is defined as in (5.28):

Ψν(4, x) =

∫ x

0

JH
ν−1(x− t)dFλ(t) =

∫ x

0

∫ x−t

0

Φ(ν − 1, u) dH(u)dFλ(t). (5.42)

As before, we use partial integration to establish the equivalence

∫ x

0

∫ x−t

0

Φ(ν − 1, u) dH(u)dFλ(t)

=

∫ x

0

Φ(ν − 1, x− t)Fλ(t) dH(x− t) =

∫ x

0

Φ(ν − 1, u)Fλ(x− u) dH(u)

= JH
ν−1(x)− (I ⊗ φλ)

∫ x

0

Φ(ν − 1, u)⊗ exp(−Tλu) dH(u) (I ⊗ exp(Tλx)).

The LST of this expression may be computed as

Ψ̃ν(4, s)

∣∣∣∣
s=0

= J̃H
ν−1(0)− (I ⊗ φλ)

[
(I ⊗ exp(Tλx)e dH(x)

+

∫ ∞

0

∫ x

0

(Φ(ν − 1, u)⊗ exp(−Tλu))(I ⊗ exp(Tλx)Tλe) dH(u)

]
,

from which we obtain

Ψ̃ν(4, 0) = J̃H
ν−1(0).

The z-transform Ψ̃∗(4, 0, z) is thus given by

Ψ̃∗(4, 0, z) = z0 · 0 + z

∞∑
ν=1

zν−1

[∫ ∞

0

Φ(ν − 1, x) dH(x)

]

= z

∫ ∞

0

exp(Tλ(z)x) dH(x)

= zΛ(−Tλ(z)),
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which gives

Ψ̃∗(4, 0, 1) = Λ(−Q). (5.43)

Case In = 5: The service of a retrial customer is non-interrupted by failure and is

completed.

This case is the only one of the five in which the orbit size may decrement. The

appropriate integral expression for ν ≥ 0 is thus given by

Ψ(i)
ν (5, x) =

∫ x

0

JH
ν (x− t)dFiθ(t) =

∫ x

0

∫ x−t

0

Φ(ν, u) dH(u)dFiθ(t). (5.44)

From Case 4, we thus have that

Ψ̃ν(5, 0) = J̃H
ν (0).

The corresponding probability generating function is therefore given by

Ψ̃(i)∗(5, 0, z) = Λ(−Tλ(z)),

from whence we conclude that

Ψ̃(i)∗(5, 0, 1) = Λ(−Q). (5.45)

With the kernel of the embedded chain {(Rn, Zn) : n ≥ 0} now specified,

we may investigate the conditions for the ergodicity of the system discussed in this

chapter. An additional prerequisite to the determination of stability conditions is

the establishment of stability criteria for level-dependent discrete-time M/G/1-type

Markov chains using the theory of ergodicity for general Markov chains. This will
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enable us to determine the exact criteria for the stability of the embedded chain,

whose recurrence properties mirror that of the process in which it is embedded.

5.3 Stability Analysis

In this section, we shall present criteria for the positive recurrence (and hence,

ergodicity) of a general level-dependent M/G/1-type Markov chain {(Ln, Yn) : n ≥
0}. Following this, we will derive an explicit stability formula for the embedded

process Q∗(∞) of the Markov-modulated unreliable M/G/1 retrial queueing system.

We first provide the necessary definitions, which are the level-dependent analogues to

those provided in Section 3.2.4. The determination of stability criteria for a M/G/1-

type Markov chain revolves around the stochastic matrix A(i), which we previously

defined in (5.19):

A(i) =
∞∑

ν=0

A(i)
ν , (5.46)

where A
(i)
ν = A

(i)
ν (∞) and i ≥ 0. In order to apply what was done for level-

independent discrete-time M/G/1-type Markov chains in Section 3.2.4, we define

the following for i ≥ 1:

β(i) =
∞∑

ν=1

νA(i)
ν . (5.47)

and

ρ(i) = π(i)β(i)e, (5.48)

where we define π(i) to be the invariant probability vector of the stochastic matrix

A(i). Consequently, π(i) contains as entries the steady-state probabilities of {Yn :

n ≥ 0}, given a starting orbit size of i ≥ 1.

In order to apply the ergodicity results of [87] and [95], we must, nevertheless,

determine the level-dependent drift d(i) of the embedded chain {(Ln, Yn) : n ≥
0}. This may be obtained by noting that, from definition (5.5) of A

(i)
ν , where i =

1, 2, 3, . . . and ν = 0, 1, 2, . . ., the increment of the process is not ν, but is actually
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ν − 1, given that there are i ≥ 1 in the retrial orbit at the beginning of a cycle. In

light of this observation, we arrive at the following Lemma:

Lemma 5.1. Suppose that the discrete-time process {(Ln, Yn) : n ≥ 0} is a M/G/1-

type Markov chain. Then its drift, d(i) is given by

d(i) = ρ(i) − 1.

Proof. We proceed using the realizations ν − 1, where ν = 0, 1, 2, . . ., of the random

increments of {Ln : n ≥ 0} and the definition of expectation:

d(i) = π(i)

∞∑
ν=0

(ν − 1)A(i)
ν e

= π(i)

∞∑
ν=0

νA(i)
ν − π(i)

∞∑
ν=0

A(i)
ν e

= π(i)β(i)e− π(i)A(i)e

= ρ(i) − 1. (5.49)

Thus, the quantity (5.49) is the drift at level i for an M/G/1-type Markov chain. It

is clear that ρ(i) ≤ 1 holds if, and only if, d(i) ≤ 0, and so we designate ρ(i) as the

conditional traffic intensity formula for the embedded Markov chain {(Ln, Yn) : n ≥
0}.

As with any DTMC, the recurrence properties of the M/G/1-type process are

predicated on the behavior of the drift (5.49) across levels of the process. We use

this relationship to define a simple condition that is equivalent to the ergodicity

of an (aperiodic) M/G/1-type DTMC {(Ln, Yn) : n ≥ 0}, where Ln denotes the

level of the process. It is clear from Pakes’ Lemma that the necessary condition for

positive recurrence of {(Ln, Yn) : n ≥ 0} is that lim supi→∞ d(i) < 0, or, equivalently,
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lim supi→∞ ρ(i) < 1. We now specify this condition for the limit, rather than the limit

supremum, in order to demonstrate a sufficient condition for positive recurrence. It

is once more necessary to utilize Theorem 3.7 in validating this criterion, which, in

turn, requires that we demonstrate Kaplan’s condition (see Section 3.1.3) for the

process {(Ln, Yn)}.

Showing that Kaplan’s condition holds is equivalent to proving that the se-

quence of real-valued functions {ψi(z) : i ∈ Z+, z ∈ [0, 1)} (see (3.25)) is bounded

from below. This sequence, written explicitly, becomes

ψi(z) =

{
zi −

∞∑
ν=0

p(i)
ν zi′

}
/(1− z)

=

{
zi −

∞∑
ν=0

(π(i)A(i)
ν e)zi+ν−1

}
/(1− z)

=

{
zi − π(i)

∞∑
ν=0

A(i)
ν zi+ν−1e

}
/(1− z), (5.50)

where p
(i)
ν is the probability that the size of the orbit transitions from i to i + ν − 1.

It is necessary to show that there exist numbers c ∈ (0, 1), B > 0, and N > 0 such

that ψi(z) ≥ −B for z ∈ [c, 1) and i ≥ N . In other words, there must exist real

numbers c ∈ (0, 1) and N > 0 such that

inf{ψi(z) : z ∈ [c, 1)} ≥ −B,

holds for every i ≥ N . Such a determination is complicated by the presence of the

infinite sum in (5.50), and so a calculus approach to the minimization of ψi(z) would

be a formidable task. We therefore choose an alternate route to the verification of

Kaplan’s condition for the M/G/1-type DTMC, one that focuses upon the conditions

listed in Theorem 3.8.
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Theorem 5.3. An irreducible, aperiodic, and discrete-time level-dependent M/G/1-

type Markov chain {(Ln, Yn) : n ≥ 0} is positive recurrent if and only if the following

conditions hold:

lim
i→∞

ρ(i) < 1, and
∞∑

ν=0

νBν < ∞, (5.51)

where ρ(i) is defined as in (5.48).

Proof. The outline of the proof is generally the same as that for Theorem 4.2, except

that we now investigate the stability of the Markov chain {(Ln, Yn) : n ≥ 0}. We

begin with the assumption that (1) ρ(i) < 1, and (2)
∑∞

ν=0 νBν < ∞. It is clear

from (5.49) that (1) implies that the drift d(i) is negative in the limit. In order to

facilitate the discussion of (2), we observe that

d(0) =
∞∑

ν=0

νBν < ∞.

This, combined with the decreasing nature of the drift over levels of the process,

demonstrates that the remaining drift terms for i ≥ 1 are likewise finite. Invoking

Pakes’ lemma as before, we thus obtain the positive recurrence of the Markov chain.

We next prove the reverse implication, namely that in which we assume the

hypothesis does not hold and {(Ln, Yn)} is ergodic. We shall derive a contradiction

using [95: Thm 1], which requires the fulfillment of Kaplan’s condition as an initial

step. As previously mentioned, we will avoid an explicit verification of this condition,

and, instead, proceed to verify condition (2) of Theorem 3.8. This requires a proof

of the existence of a lower bound for the sequence {δi : i = 0, 1, 2, . . .}, where

δi =
∑
j≤i

pij(j − i),

and pij is the (i, j)th element of the transition probability matrix P of {(Ln, Yn)}.
We refine the expression for δi by noting that, for the state space S of the process
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{(Ln, Yn)},
min{j − i : i ≥ j, i, j ∈ S} = −1,

since the only decrement (i.e., transition to a lower level) that a M/G/1-type process

is allowed is -1. Applying this observation leads to the following for i ≥ 1:

δi =
∑
j≤i

pij(j − i)

= (−π(i−1)A
(i−1)
0 + 0 · π(i)A

(i)
1 )e

= −π(i−1)A
(i−1)
0 e

≥ −1

with (5.52) a result of the fact that π(i)A
(i)
ν e is the unconditional probability of an

increment of ν − 1 in the level for ν ≥ 0. Hence, we have shown that Kaplan’s

condition holds.

Finally, we recall that from Lemma 5.1 that the drift at level i is given by

d(i) = ρ(i) − 1. Since we assume that limi→∞ ρ(i) > 1, there must exist some N > 0

such that d(i) > 0 whenever i ≥ N . By Theorem 3.7, we conclude that the M/G/1-

type DTMC {(Ln, Yn)} cannot be ergodic, which contradicts our assumption. This

result completes the proof of necessity.

We now return to the discussion of the stability of the embedded chain Q∗(∞),

which we have shown to be a Markov chain of M/G/1-type. In order to facilitate the

derivation of simple analytic criteria for Q∗(∞) to be positive recurrent, we define

the (limiting) matrices

Ā = lim
i→∞

A(i) and β = lim
i→∞

β(i) = lim
i→∞

∞∑
ν=0

νA(i)
ν ,
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and the vector

π = lim
i→∞

π(i),

assuming that the limits exist. It is then true by the fundamental properties of limits

that

ρ = lim
i→∞

π(i)β(i)e = πβe,

or, in other words, we may first compute individual limits, then multiply the terms

together in order to obtain ρ. Thus, it remains to determine the methods by which

we compute the matrices β(i) and the invariant probability vectors π(i).

The determination of β(i) is contingent on making the observation that, since

the matrix z-transform, A(i)∗(z) =
∑∞

ν=0 A
(i)
ν zν , is analytic on the unit disk |z| ≤ 1,

we may interchange the order of the derivative and the summation to obtain

d

dz
A(i)∗(z) =

∞∑
ν=0

d

dz

(
A(i)

ν zν
)

=
∞∑

ν=0

νA(i)
ν zν−1, (5.52)

and thus we may obtain the matrix β(i) by taking the derivative of the matrix-

transform A(i)∗(z) and evaluating at z = 1, as follows:

β(i) =
d

dz
A(i)∗(z)

∣∣∣∣
z=1

. (5.53)

The vector π = limi→∞ π(i), where the π(i) are the invariant vectors of the

matrices A(i), is obtained by noting the following, which is that

π = lim
i→∞

π(i) = lim
i→∞

π(i)A(i) = πĀ (5.54)

and

1 = lim
i→∞

π(i)e = πe, (5.55)
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and thus π is the invariant probability vector of the stochastic matrix Ā. The

computation of Ā itself may be accomplished via the following:

A(i) =
∞∑

ν=0

A(i)
ν =

∞∑
ν=0

A(i)
ν zν

∣∣∣∣∣
z=1

= A(i)∗(1)

(see (5.46) for the definition of A∗(z)). We thus obtain

Ā = lim
i→∞

A(i)∗(1). (5.56)

5.3.1 Computation of the Traffic Intensity

With the theoretical background afforded by Theorem 5.3 we may now proceed

to determine the values of the parameter vectors λ, ξ, α, θ, and the scalar-valued

average service time 1/µ that guarantee the validity of the following statements:

lim
i→∞

π(i)β(i)e = lim
i→∞

π(i)

∞∑
ν=0

νA(i)
ν e < 1, (5.57)

∞∑
ν=0

νBν < ∞. (5.58)

Through unconditioning, and by the definition of Ψ̃
(i)
ν (k, 0), we obtain

Ã(i)
ν =

5∑

k=1

Ψ̃(i)
ν (k, 0)P

(i)
k . (5.59)

Define

M̃
(i)
k =

d

dz
Ψ̃(i)∗(k, s, z)

∣∣∣∣ s=0
z=1

,

which is equivalent to the expected number of primary arrivals to the queue in a

(regenerative) cycle given that there are i customers in the system (orbit). If one
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factors in the observation that

β(i) =
∞∑

ν=0

νA(i)
ν =

d

dz
Ã(i)∗(s, z)

∣∣∣∣ s=0
z=1

, (5.60)

∞∑
ν=0

νBν =
d

dz
B̃∗(s, z)

∣∣∣∣ s=0
z=1

, (5.61)

it becomes clear that we may rewrite (5.57) and (5.58) as

lim
i→∞

π(i)β(i)e = lim
i→∞

π(i)

{
5∑

k=1

M̃
(i)
k P

(i)
k

}
e, (5.62)

and ∞∑
ν=0

νBν =
5∑

k=1

M̃
(0)
k P

(0)
k < ∞. (5.63)

Starting from (5.56), we obtain the invariant probability vector of the stochastic

matrix Ā as follows:

Ā = A(i)∗(1) = lim
i→∞

∞∑
ν=0

zνÃ(i)
ν (s)

∣∣∣∣ s=0
z=1

.

From (5.59), we thus obtain

Ā = lim
i→∞

∞∑
ν=0

zν

5∑

k=1

Ψ̃(i)
ν (k, s)P

(i)
k

∣∣∣∣ s=0
z=1

=
5∑

k=1

Ψ̃(i)∗(k, 0, 1)P
(i)
k . (5.64)

The interchange of summations in (5.64) is contingent upon the analyticity of

Ψ̃
(i)
ν (k, s) in a neighborhood of s = 0.

5.3.2 Limiting Values of P
(i)
k

We begin by considering the terms Pk = limi→∞ P
(i)
k for cycle types k =

1, 2, . . . , 5. To this end, we present the following result:
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Proposition 5.1.

lim
i→∞

(Tη ⊕ Tiθ)
−1 = lim

i→∞
(Tiθ ⊕ Tη)

−1 = 0,

where Tη = Q−∆(η) for some exponential rate parameter η.

Proof. We recall from Lemma A.1 that

(Tη ⊕ Tiθ)
−1 =

∫ ∞

0

exp [(−Tη ⊕ Tiθ)x] dx

=

∫ ∞

0

exp(−Tηx)⊗ exp(Tiθx) dx

=

∫ ∞

0

exp(−Tηx)⊗ exp [(Q− i∆(θ))x] dx.

since Q and ∆(θ) commute, we may further simplify the above to obtain

(Tη ⊕ Tiθ)
−1 =

∫ ∞

0

exp(−Tηx)⊗ exp(Qx) exp [−i∆(θ) x] dx. (5.65)

Since we have, for diagonal matrices ∆(η), the identity

exp (∆(η)) = ∆ (exp(η))

where exp(η) = [eηj ]j∈{1,...,m}, (5.65) becomes

∫ ∞

0

exp(−Tηx)⊗ exp(Qx)∆
(
e−iθx

)
dx → 0

as i →∞, and thus limi→∞ (Tη ⊕ Tiθ)
−1 = 0.

Proposition 5.1 allows us to prove the following for a generic vector a:

Proposition 5.2. Given a (constant) generic MMPP rate vector a and

P0(iθ, a) = P
{
X iθ ≤ Xa

}
,
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its limit as i →∞ is given by

lim
i→∞

P0(iθ, a) = lim
i→∞

[1 + (φiθ ⊗ φa)(−Tiθ ⊕ Ta)
−1(e⊗ (Tae)] = 1. (5.66)

Proof. The result immediately follows from the application of Proposition 5.1.

The next, and last, result resolves an issue concerning the limiting value of a

certain type of expression containing MMPP-related elements:

Proposition 5.3. Given a (constant) generic MMPP rate vector a and a generic

vector γ, we obtain the limiting value

lim
i→∞

(φiθ ⊗ γ)(−Tiθ ⊕ Ta)
−1(Tiθe⊗ e) (5.67)

= lim
i→∞

(φγ ⊗ φiθ)(−Ta ⊕ Tiθ)
−1(e⊗ Tiθe)

= −γe.

Proof. As in Proposition 5.1, we rewrite the argument of the limit in (5.67) in integral

form and then apply the technique of partial integration:

(φiθ ⊗ γ)(Tiθ ⊕ Ta)
−1(Tiθe⊗ e)

=

∫ ∞

0

(φiθ exp(−Tiθt)Tiθe)(γ exp(Tat)e) dt

= (φiθ exp(−Tiθt)e)(γ exp(Tat)e)

∣∣∣∣
∞

t=0

− (φiθ ⊗ γ)

∫ ∞

0

exp((Tiθ ⊕ Tξ)t) dt(e⊗ Tae)

= −(φiθe)(γe)− 0 = −γe.
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Through the application of Proposition 5.1, one may conclude that

Pk = lim
i→∞

P
(i)
k = 0, k = 1, 2, 4, (5.68)

since each are multiplied by a probability of the form P0(a, iθ), where a is a generic

MMPP rate vector. For Cases 3 and 5, Proposition 5.3 may be used to show that

P3 ≡ lim
i→∞

P
(i)
3 = φξ (I − Λ(−Tξ)) e

P5 ≡ lim
i→∞

P
(i)
5 = 1− φξ (I − Λ(−Tξ)) e. (5.69)

This result confirms the intuitive notion that Case 3, which is the interruption of

the service of a retrial customer, and Case 5, the completion of a retrial service,

are the key events that influence system stability as the orbit size becomes large.

Further revealing is the observation that the scenario of Case 5 is the only one

that permits the orbit size to decrement; thus, at a minimum, the probabilities of

transition between orbit sizes resulting from the situation of Case 5 must be taken

into consideration for all i ≥ 1.

5.3.3 The Ergodicity of {(Rn, Zn) : n ≥ 0}

Now that the requisite facts and concepts have been presented, we may com-

pute an explicit traffic intensity formula for the embedded chain {(Rn, Zn) : n ≥ 0}.
We shall first state the result, and then provide the actual steps of the computation

as a proof.

Theorem 5.4. The embedded Markov chain {(Rn, Zn) : n ≥ 0} is ergodic if and

only if both of the following conditions hold:

1. The overall traffic intensity, ρ, fulfills the condition

ρ = pβe < 1,
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where p is the steady-state probability vector of the random environment, β is

the matrix given by

β =

{
Υ3(−Q) + Υ3(∆(λ))

}
P3 +

{
d

dz
Λ(−Tλ(z))

∣∣∣∣
z=1

}
P5, (5.70)

and

Υ3(X) = (I ⊗ φξ)
[
(Q⊕ Tξ)

−1(X ⊕ Tξ)(Q⊕ Tξ)
−1

]
(I ⊗ Tξe)

− (I ⊗ φα ⊗ φξ)

{ [
(Q⊗ I ⊕ Tξ)

−1(X ⊗ I ⊕ Tξ)(Q⊗ I ⊕ Tξ)
−1

]

× [(I ⊗ (−Tα)e⊗ e) + (I ⊗ e⊗ Tξe)]

− [
(Q⊕ Tα)−1(X ⊕ Tα)(Q⊕ Tα)−1 ⊗ I)

]
(I ⊗ Tαe⊗ e)

}
. (5.71)

2. The condition,

(I ⊗ φα)(Q⊕ Tα)−1

{
(I ⊗ Tαe) + (∆(λ)⊕ Tα)(Q⊕ Tα)−1

}

× (I ⊗ Tαe) P
(0)
1 +

{
2Υ2(−Q) + Υ2(∆(λ))

}
P

(0)
2

+

{
Λ(−Q) +

d

dz
Λ(−Tλ(z))

∣∣∣∣
z=1

}
P

(0)
5 < ∞, (5.72)

where

Υ2(X) =

{
(I ⊗ φξ ⊗ φλ)

[
(Q⊕ Tξ)

−1(X ⊕ Tξ)(Q⊕ Tξ)
−1 ⊗ I

]

× [I ⊗ (Tξ ⊗ I)]

}
/P0(λ, ξ)− (I ⊗ φα ⊗ φξ ⊗ φα)
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×
{[

(Q⊗ I ⊕ Tξ)
−1(X ⊗ I ⊕ Tξ)(Q⊗ I ⊕ Tξ)

−1 ⊗ I
]

× {
(I ⊗ (−Tα)e⊗ (I ⊗ I)) + (I ⊗ e⊗ (Tξ ⊗ I)) + (I ⊗ Tαe⊗ (I ⊗ I))

}

− [
(Q⊕ Tα)−1(X ⊕ Tα)(Q⊕ Tα)−1 ⊗ (I ⊗ I)

]

× (I ⊗ Tαe⊗ (I ⊗ I))

}
(−Tξ ⊕ Tλ)

−1(e⊗ Tλe). (5.73)

Proof. This result is a straightforward application of Theorem 5.3, which provides

the basic criteria for the ergodicity of any M/G/1-type DTMC. The first stipulation

of the theorem is that

πβe < 1,

where π is defined as the invariant probability vector of

Ā = lim
i→∞

∞∑
ν=0

A(i)
ν .

It is clear from this definition that Ā gives the steady-state transition probabilities

of {(Rn, Zn) : n ≥ 0} aggregated by environment state, which is the same regardless

of the number i in orbit. Thus, π = p, which is interpreted as the steady-state

probability vector of the random environment embedded at regenerative epochs.

We next use (5.62) as a basis for the computation of ρ in condition (1), while

applying the results for the limiting probabilities of Cases 1 through 5 given in (5.68)

and (5.69) in order to state

β = lim
i→∞

β(i) = lim
i→∞

5∑

k=1

M̃
(i)
k P

(i)
k

= lim
i→∞

(
M̃

(i)
3 P

(i)
3 + M̃

(i)
5 P

(i)
5

)
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= lim
i→∞

d

dz

(
Ψ̃(i)∗(3, s, z) P

(i)
3 + Ψ̃(i)∗(5, s, z) P

(i)
5

) ∣∣∣∣ s=0
z=1

. (5.74)

Tedious algebra then yields the expressions given in (5.70) and (5.71).

Subsequently, for condition (2), we refer to the second criterion of Theorem

5.3, which is that
∞∑

ν=0

νBν < ∞.

As in (5.61), we compute this quantity in the following manner:

∞∑
ν=0

νBν =
5∑

k=1

M̃
(0)
k P

(0)
k

=
5∑

k=1

d

dz
Ψ̃(0)∗(k, s, z)P

(0)
k

∣∣∣∣ s=0
z=1

=
d

dz

(
Ψ̃(0)∗(3, s, z)P

(0)
3 + Ψ̃(0)∗(5, s, z)P

(0)
5

) ∣∣∣∣ s=0
z=1

.

This likewise yields the quantities (5.72) and (5.73), which estabilishes (2) as the

remaining criterion for the ergodicity of {(Rn, Zn)}. We have thus shown that con-

ditions (1) and (2) are the necessary and sufficient requirements for the ergodicity

of {(Rn, Zn)} as specified by Theorem 5.3.

As with the traffic intensity formula (4.18), all terms containing θ disappear

in the limit. This is in accordance with results for all other retrial queues, which is

that the retrial rate has no bearing upon the long-term stability of the queue. We

may use Theorem 5.4 to interpret this result, which is, plainly stated, that system

stability is measured against the worst possible scenario, namely that in which the

orbit size grows very large. However, as the orbit size grows large, the retrial rates

also grow without bound, until the system becomes an instantaneous-feedback retrial

queue (i.e., from the point of view of the server, retrials occur continuously). It is
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thus apparent that a retrial will obtain service with probability one, regardless of

the value of the individual retrial rate.

5.3.4 Application to the Exponential Model

Theorem 5.4 applies to the embedded Markov chain {(Rn, Zn) : n ≥ 0} of

{(R(t), Z(t), X(t)) : t ≥ 0} at the regenerative epochs Tn so long as the service

distribution meets the requirements stated in Section 5.1. We may thus com-

pare the stability criteria for the general model to that with exponential service.

More specifically, we consider the retrial queueing model of [62] that excludes the

possibilities of customer balking and Markov modulation, with the additional as-

sumption of exponentially-distributed service times. This model is equivalent to

{(R(t), Z(t), X(t)) : t ≥ 0} if one fixes all of the exponential rates of arrival, service,

failure, repair, and retrial. Any random environment that is an irreducible Markov

chain may be thus chosen for the comparison.

The parameters of the model itself are not numerically specified. They are

simply left in terms of their symbolic representations λ, µ, ξ, α, and θ, as defined

in Sections 4.1 and 5.1. The density function h(x) of the service distribution is thus

chosen to be

h(x) = µe−µx,

which is the exponential p.d.f. with rate µ. We define the infinitesimal generator Q

of the random environment as the 2× 2 matrix

Q =


 −1 1

2 −2




whose steady-state probability vector is thus given by p = [2/3, 1/3]. Lastly, all of

the initial probabilities φη, where η is the rate vector of a MMPP, are fixed at p.
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The next task is to obtain the limiting probabilities for Cases 3 and 5. Direct

computation yields

P3 =
ξ

µ + ξ
and P5 =

µ

µ + ξ
.

The corresponding 2× 2 transform matrices

lim
i→∞

Ψ̃(i)∗(k, 0, z), k = 3, 5,

are found to be

Ψ̃(i)∗(3, 0, z) =
zα

(λ(1− z) + α)(λ(1− z) + α + 3)


λ(1− z) + α + 2 1

2 λ(1− z) + α + 1


 ,

and

Ψ̃(i)∗(5, 0, z) =
1

µ + 3


µ + 2 1

2 µ + 1


 .

In order to compute the matrix β, it is sufficient to obtain

lim
i→∞

M̃ (i)∗(3, 0, 1) =
d

dz
lim
i→∞

Ψ̃(i)∗(3, 0, z)

∣∣∣∣
z=1

,

since Ψ̃(i)∗(5, 0, z) is constant. Consequently,

β = lim
i→∞

M̃ (i)∗(3, 0, 1)P
(i)
3 =

d

dz
lim
i→∞

Ψ̃(i)∗(3, 0, z)P
(i)
3

∣∣∣∣
z=1

=
λµξ

(µ + ξ)(λ(1− z) + µ)2λ(1− z) + µ + 3)2

×

 k1(z) (2λ(1− z) + 2µ + 3)2

−(2λ(1− z) + 2µ + 3)2 k2(z)




∣∣∣∣∣∣
z=1

,
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where

k1(z) =
2

3
(λ(1− z) + µ + 3)2 +

1

3
(λ(1− z) + µ)2,

k2(z) =
1

3
(λ(1− z) + µ + 3)2 +

2

3
(λ(1− z) + µ)2.

The traffic intensity expression may finally be computed as

ρ = pβe =
λξ + λ(α + ξ)

α(µ + ξ)
. (5.75)

Notice that (5.75) is exactly the conditional traffic intensity formula that can be

derived from [62: Thm 1], and which appears in (4.34).

This concludes the discussion of the steady-state analysis of the unreliable

M/G/1 retrial queue in a random environment. We were able, using the matrix-

analytic theory of Markov chains of M/G/1-type, to obtain the transition prob-

ability matrix for embedded Markov chain of a complex retrial queueing system.

We subsequently proved a condition for the ergodicity of general, level-dependent,

discrete-time M/G/1-type Markov chains. To the best of our knowledge these results

are novel. We then utilized this condition in order to derive a stability expression

for the unreliable Markov-modulated M/G/1 retrial queueing system.
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6. Queueing Model Optimization

The results of Chapter 4 may be used to improve the performance of retrial queueing

systems through the optimization of design or operating parameters. However, the

matrix-analytic approach taken in Chapter 4 leads to a numerical approximation of

the steady-state orbit size distribution; therefore, a closed-form objective function

of the operating parameters is not available. We therefore resort to mesh-adaptive

search techniques for problems that have no derivative information. For such tech-

niques, it is not necessary to specify a closed-form objective function, so long as

the objective function may be numerically evaluated at points inside the feasible re-

gion. For detailed information on the search algorithms applied in this chapter, the

reader is referred to the excellent summaries contained in [2, 15, 16]. This chapter

is illustrative in nature, highlighting the potential usefulness of the main results (for

the exponential model) in improving the performance of retrial queues with complex

dynamics.

6.1 Problem Formulation

A principal concern of most queueing systems is the average amount of time

customers spend in the retrial orbit. For instance, retrial queues can be used to

model customer contact centers wherein customers who dial into the center may not

receive service immediately and try back after a random time. A critical performance

measure is the expected time such customers spend outside the system attempting to

gain service. An intrinsic cost (that may be difficult to ascertain) may be associated

to each unit of time that the customer spends in the orbit. Thus, we consider

the minimization of E[WR]. The decision variables are the exponential arrival and

service rates defined by the vectors λ = [λj] and µ = [µj], respectively. We denote

by ρ(λ,µ), the traffic intensity defined in (4.18), now expressed as a function of the

decision variables λ and µ.
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As before, the integer m denotes the number of distinct random environment

states, and we define the nonnegative row vectors x1, x2, y1, and y2 such that for

j = 1, 2, . . . , m,

x1 = [x11, x12, . . . , x1j],

x2 = [x21, x22, . . . , x2j],

y1 = [y11, y12, . . . , y1j],

y2 = [y21, x22, . . . , y2j]

with x1 < x2 and y1 < y2. We may then state the mathematical programming

formulation as follows:

min E[WR]

s.t. ρ(λ, µ) < 1 (6.1a)

λj ∈ [x1j, x2j], j = 1, . . . , m (6.1b)

µj ∈ [y1j, y2j], j = 1, . . . ,m. (6.1c)

It should be recognized that the objective function E[WR] may only be evaluated

numerically, while constraints (6.1b) and (6.1c) are box constraints that are provided

by the user. The only quantity that may be computed explicitly from the model is

the left-hand side of constraint (6.1a), which is the traffic intensity (4.18).

6.2 Solution Procedure

The optimization software NOMADm [1] was employed to solve problem for-

mulation (6.1). The advantage of this approach rests in the intrinsic flexibility of this

software, which can locate high-quality solutions given only a numerically defined

objective function, a set of constraints and an initial feasible solution. NOMADm em-

ploys a form of generalized pattern search (GPS) algorithm known as mesh-adaptive
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direct search (MADS), that incrementally explores, or polls, the surrounding feasible

region at each iteration of the procedure. The iterations of the algorithm are con-

ducted on a mesh, which is a means by which the increments of steps through the

feasible region is controlled. The mesh may be coarsened or refined as the situation

dictates, hence the term mesh-adaptive. The first step is entitled search; any point

on the mesh may be evaluated during a search routine, which, as stated in [2], can

be defined in any manner whatsoever. The poll step, however, is essential to the

workings of the algorithm. It involves the search of points on the mesh that neigh-

bor the current iterate. Most of the theoretical focus regarding generalized pattern

search concerns the effect of various polling strategies upon rate of convergence of

the algorithm and the quality of the solutions.

Because MADS is stochastic in the way that it polls surrounding points, it

is instructive to conduct multiple optimization runs for the same problem instance.

The user may alleviate the computational cost of such additional runs by storing

previously visited points in a cache file, which thus allows faster run times, though

at the expense of hard-disk storage. Selecting different initial feasible points for the

algorithm may also increase confidence that a global rather than local minimum has

been obtained. A suitably chosen search routine, in conjunction with polling, may

likewise be used to mitigate this risk.

It should be noted that, in the numerical implementation of (6.1), constraint

(6.1a) is not included as a formal constraint. Rather, any points (λ,µ) that render

the system unstable are simply not investigated any further during a polling (or

search) step. The algorithm removes such points from its list of solution candidates

and then proceeds to the next trial point on the mesh. This is done as a precaution

to ensure that the routine does not attempt to evaluate the objective function at

points that lead to instability of the queueing system. In such cases, the steady-state

probabilities do not exist, and hence, we avoid further problems that may arise from

this circumstance.
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6.3 Numerical Illustrations

The problem instances presented in this subsection are exponential with 3-

and 5-state random environments, respectively. Initial feasible vectors λ0 and µ0

were specified for each of the 3- and 5-state cases. The remaining vectors, ξ, α and

θ, were assigned values that did not change during optimization runs. Whenever

a run terminated, the values of λ∗ and µ∗ that produced the optimal cost E[WR]∗

were recorded. Additional runs, using distinct initial feasible points, were used to

help ensure that the algorithm produced consistent solutions. As noted above, the

objective is to minimize the steady-state mean time spent in orbit, E[WR].

6.3.1 Three-State Environment

We now present results for the NOMADm optimization of the queueing model

subject to a three-state random environment with infinitesimal generator matrix

Q =




−2.0 1.0 1.0

1.0 −2.0 1.0

1.0 1.0 −2.0


 . (6.2)

The values of the parameters ξ, α, and θ were fixed at the values shown in Table

6.1. In addition, we specify the box constraints on the decisions variables λ and µ

to be

1 ≤ λj ≤ 6, j = 1, 2, 3 (6.3)

1 ≤ µj ≤ 8, j = 1, 2, 3. (6.4)

Results for a single optimization run appear in Table 6.2. These intuitive

results indicate that the optimal parameters λ∗ and µ∗ lie mostly on the boundaries

of the region defined by (6.3) and (6.4). This is a consequence of the fact that no
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Table 6.1 Problem data for 3-state example.

Vector State 1 State 2 State 3

λ0 2.0 3.5 4.0
µ0 4.0 3.5 7.0
ξ 3.0 2.0 0.1
α 4.0 7.0 2.0
θ 1.5 3.0 5.0

penalties were assessed in the problem formulation for increasing service rates or for

decreasing customer traffic. An exception to this was the value of λ∗3, which lies

in the interior of the region defined by the box constraints (6.3) and (6.4). That

λ∗3 ≥ 1 was not binding is due to the intersection of the region enclosed by the box

constraints with that defined by the constraint ρ(λ,µ) < 1.

We were likewise interested in the convergence rate of MADS. A plot of the

iteration history (see Figure 6.1) revealed that most of the optimality gap is elim-

inated by MADS in the first 50 of 389 iterations. This information is needed for

estimating truncation points for individual runs, particularly as the number of envi-

ronmental states increase. We shall obtain a glimpse of the dimensionality problem

in the five-state example that we discuss next, for which computation time becomes

a significant issue.

Table 6.2 Optimal solution for 3-state example.

Vector State 1 State 2 State 3 E[WR]∗

λ∗ 1.00 1.00 1.71 6.9014
µ∗ 8.0 8.0 8.0
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Figure 6.1 Graphical depiction of the sequence of MADS iterations for the three-
state example.

6.3.2 Five-State Environment

We now present an example using a five-state random environment with in-

finitesimal generator matrix

Q =




−1 1 0 0 0

0 −1 1 0 0

0 0 −1 1 0

0 0 0 −1 1

1 0 0 0 −1




.
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The box constraints for the environment-dependent arrival and service rates are

given by

1 ≤ λj ≤ 5, j = 1, 2, . . . , 5 (6.5)

0 ≤ µj ≤ 4, j = 1, 2, . . . , 5, (6.6)

and the remaining problem data is summarized in Table 6.3.

Table 6.3 Problem data for 5-state example.

Vector
Environment State

1 2 3 4 5

λ0 1.0 1.0 1.0 2.0 5.0
µ0 2.0 2.5 1.0 3.0 4.0
ξ 0.5 1.1 1.5 4.0 1.0
α 2.0 0.5 8.5 4.5 6.0
θ 1.0 4.0 2.0 8.0 5.0

Table 6.4 summarizes the optimal solution vectors and objective function value

for this illustration. The rate of convergence seen in Figure 6.2 is similar to that of

the three-state model. Again, the optimal vectors λ∗ and µ∗ lie almost exclusively

on the boundaries of the region defined by the box constraints in (6.5) and (6.6),

with the exception of λ5, which is set at its upper bound, and thus λ∗5 ≥ 1 turns out

to be a nonbinding constraint. Again, this is due to the fact that penalties are not

assessed for choosing arrival and service rates on the boundary of the feasible region.

The processing time required to complete the optimization run was much more

substantial here than for the model with a three-state random environment. This

was a consequence of the exponential increase in the computational effort needed to

compute the steady-state probabilities at each objective function evaluation.
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Table 6.4 Optimal solution: 5-state example.

Vector
Environment State

E[WR]∗

1 2 3 4 5

λ∗ 1.0000 1.0000 1.0000 1.0000 4.9998
13.279µ∗ 3.9996 3.9229 3.9999 3.9999 4.0000

The availability of the steady-state distribution in numerical form allows us to

obtain approximately optimal operating parameters for the M/M/1 retrial queue-

ing system. We have demonstrated that the computational method outlined in this

chapter can be applied to a variety of complex queueing systems, so long as the limit-

ing probabilities can be obtained. This includes the large class of queueing models to

which the matrix-analytic techniques may be applied. While many other aspects of

the optimization of unreliable retrial queueing systems should be investigated (e.g.,

admission control, prioritized retrial orbit, etc.), our main purpose here was to il-

lustrate the feasibility of using the main results to determine operating parameters

(namely the arrival and service rates) that minimize the steady-state mean time in

orbit. In the final chapter, we review the main contributions and conclusions of this

research and provide some important directions for future work.
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Figure 6.2 Graphical depiction of the sequence of
MADS iterations for 5-state example.
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7. Contributions and Future Research

In this dissertation, much progress has been made toward the understanding of

modulated retrial queueing models subject to breakdowns. Although a number of

researchers have studied the steady-state performance of retrial queues, this disser-

tation is the first to consider Markov modulation and server breakdowns in a single

model. Moreover, matrix-analytic methods were employed in the mathematical char-

acterization of the stability of the M/M/1 and M/G/1 versions, as well as to their

subsequent numerical solution.

Chapter 4 first considered the foundational case of a single-server system with

Poisson arrivals and Markov modulation subject to server failures. For this queue-

ing model, a formal stability analysis was provided that has further implications for

more general level-dependent quasi-birth-and-death (LDQBD) processes. By em-

ploying classical techniques and the matrix-analytic framework, a computable traffic

intensity was derived as an explicit function of the Markov-modulated arrival, ser-

vice, retrial, failure and repair rates. We further illustrated (in Chapter 6) how the

results of this chapter can be used to pragmatically select arrival and service rates

that minimize the steady-state mean time a customer spends in orbit, an impor-

tant measure in a number of applications including communications and computer

networks as well as customer contact centers.

We then set out in Chapter 5 to devise similar conditions for the stability of

the same retrial queueing system when each customer brings a generally distributed

service requirement. In this model, the service distribution is not modulated by the

random environment, but all other processes operate exactly as before. In this case,

it was shown that the Markov chain embedded at epochs in which the server enters

the up and idle state is a Markov chain of M/G/1 type. Consequently, we were able

to prove the conditions needed for stability of the queueing system. Furthermore,

through some tedious mathematics, we were able to explicitly define the transition
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probability matrix of the embedded Markov chain and define all of its elements in

the matrix-analytic format. To the author’s knowledge, such results have appeared

neither in the stochastic modeling nor the retrial queueing literature.

While this dissertation contributes several basic results for unreliable retrial

queueing systems that operate in a random environment, there are several potentially

fruitful avenues for extension of this research. One obvious extension is to consider

the exponential model with multiple servers. Such a queueing system can be used

to model the operation of customer contact centers which have recently received a

great deal of attention in the stochastic modeling community. In such case, one

may consider customers who also enter the retrial orbit by abandoning the system

if their wait time exceeds some predetermined threshold. It may also be instructive

to consider non-exponential inter-retrial times since customers may retry the system

at arbitrary random intervals.

Another important extension of this work is the consideration of networks

of unreliable retrial queueing systems in a random environment. These may, for

example, be used to model Internet traffic wherein the various environment states

may correspond to the traffic in the network which impacts the performance of each

individual queueing station. Analyzing a stochastic network of this kind promises to

be very challenging, though worthwhile.

The optimization portion of this research served the purpose of illustrating how

the results might be used to improve the performance of a retrial queueing system

subject to time-varying conditions. It will be instructive in the future to consider

budget constrained systems which add significant complexity to the optimization

model of Chapter 6. Furthermore, dealing with a “black box” objective function

presents numerical challenges that need to be addressed since it is difficult to discern

when a global optimal solution to the problem exists. The computational complexity

involved in evaluating candidate solutions is not a minor issue. New algorithms for
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efficiently computing the approximate steady-state orbit size distribution will be

needed to help address this issue.
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Appendix A.

A.1 Matrix Binary Operators

We review here some basic, but important, operations on the space of matrices

Rm×n that we shall require in order be able to apply the matrix-analytic methods

to the study of quasi-birth-and-death processes (QBDs), the M/G/1-type Markov

chains, and Markov modulation. We shall first discuss Kronecker products and sums,

which are crucial to the manipulation of matrix expressions under integration. We

also discuss another binary operator termed the matrix convolution product, which

is the matrix version of the convolution of scalar distribution functions.

A.1.1 The Kronecker Product and Sum of Matrices

A useful tool in the representation of block-matrix expressions is the binary

operator ⊗ : Rm×n × Rp×q → R(mp)×(nq), which is known as the Kronecker product,

where Rm×n denotes the set of m × n matrices over the field of real numbers. The

Kronecker product is also known as the tensor product when used in a more general

algebraic or topological context. The operation is defined as follows:

A⊗B =




a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
...

...

am1B am2B · · · amnB.




(1.1)

Its usefulness in the analysis of stochastic models derives from the ease with which

one may describe the state space of certain juxtaposed stochastic processes (c.f. The-

orem 5.3.5 of [82]). Finally, we introduce the Kronecker sum ⊕ for square matrices,

which is defined as

A⊕B ≡ A⊗ IB + B ⊗ IA,
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where IA and IB are the identity matrices of the same dimensions as that of A and

B, respectively.

Some important properties of the Kronecker product bear mentioning since

they are crucial to the integration of expressions containing matrices. We begin with

the identity

(A⊗ C)(B ⊗D) = AB ⊗ CD, (1.2)

where all terms are rectangular matrices for whom the products AB and CD are

defined. As in [82: p 245], we observe that

exp(A)⊗ exp(B) = exp(A⊗ I + I ⊗B) = exp(A⊕B), (1.3)

which is analogous to the behavior of products of scalar exponential terms.

A.1.2 Matrix Convolution Products

One other matrix operation bears mentioning since it will appear in our dis-

cussion of M/G/1-type processes in Chapter 4. The matrix convolution product is,

as its name suggests, related to the notion of the convolution of two scalar mass-

functions. First, the matrix convolution (·, ·, ∗) of two matrices of distribution or

mass-functions, which we shall denote by F (x) = [fij(x)] and G(x) = [gij(x)], is

defined as the m×m matrix

[F (x) ∗G(x)]ij =
m∑

k=1

∫ t

0

fik(x− x1)gkj(x1) dx1 =
m∑

k=1

fik(x) ∗ gkj(x). (1.4)

From this definition, we obtain the Kronecker convolution product (·, ·,~), which is

explicitly given by the m2 ×m2 matrix

F (x) ~ G(x) = [fij(x) ∗G(x)]ij. (1.5)
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An overview of the operation, related properties, and more advanced mathematical

applications may be found in [53].

A.2 PH-Random Variables

Phase-type, or PH -distributed random variables define the time-to-absorption

of a Markov process with initial probability vector (φ0,φ) and with finitely-many

transient states, or phases, 1, . . . , m, and absorbing state m + 1. Processes that

behave accordingly are absorbed with probability one. Important applications re-

side in such fields as reliability theory, where the absorbing state frequently rep-

resents equipment failure, after which the process ends or it may be restarted by

a repair or replacement. The restarting of the process may be considered to be

regenerative (or at least Markov regenerative in the case that the process restarts

with different parameters). This trait enables PH-distributions to aptly describe the

Markov-modulated Poisson process, which features highly in the queueing model of

this dissertation.

The idea of a PH-distribution is an extension of the earlier method of stages,

which was first studied by Erlang using the distribution that bears his name. In fact,

the family of Erlang and hyperexponential distributions are themselves special mani-

festations of PH-distributions, which in turn are dense in the space of all nondefective

distributions. This fact is useful to the approximation of arbitrary (nondefective)

distributions. Moreover, the PH-distribution function possesses attractive character-

istics that often culminate in computationally tractable mathematical expressions.

For these reasons, PH-distributions and their matrix-analytic generalizations are

becoming increasingly important in the field of stochastic operations research.
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A.2.1 Continuous PH-Distributions

To a continuous PH-random variable X we associate the infinitesimal generator

Q =


 0 0

t T


 , (1.6)

of a Markovian process, where t is a column vector and T is a square matrix such that

Te+t = 0, both of dimension m, to the process with non-absorbing states {1, . . . ,m}
and absorbing state 0. We shall assume for the remainder of this discussion that the

φ0 component of the initial probability vector (φ0,φ) is equal to zero, since this is

equivalent to stating that the corresponding PH-process does not begin in state 0.

Define the matrix exponential exp(A) to be a function whose domain consists

of square matrices A such that

exp(A) ≡
∞∑

k=0

Ak

k!
.

We may now define the c.d.f. of the PH-distribution associated to the generator Q

as

F (x) = P {X ≤ x} = 1− φ exp (Tx)e,

which we may, using the fact that t = −Te, differentiate in order to obtain the

density function of X

f(x) = φ exp(Tx)t.

It is clear from these definitions that the PH-random variable is completely de-

termined by the stochastic vector φ and the matrix T . Hence, we call [φ, T ] the

representation of the PH-distribution that we now denote by PH(φ, T ). As noted

by Neuts [83], Latouche and Ramaswami [66], and others, this representation is by

no means unique, but one can always find (for a nondefective PH-distribution) a

representation such that the probability of absorption from any phase i = 1, . . . , m
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is equal to one. Such a representation is necessary and sufficient for the matrix T to

be invertible (see [66]), and hence, we may always find a representation [φ, T ] for a

nondefective PH-distribution for which T is invertible.

A.2.2 Discrete PH-Distributions

Discrete PH-distributions represent the distribution of the time-to-absorption

of a discrete-time Markov chain (DTMC). They may also be represented by the pair

[τ , T ], except that the matrix portion T of the representation contains the probability

of transitions between nonabsorbing states of an irreducible DTMC. In other words,

the transition probability matrix of the DTMC is given by

P =


 0 0

t T


 , (1.7)

where t + Te = e. Suppose that X ∼ PHd(τ, T ). Since we have

P k =


 0 0

e− T ke T k


 ,

the mass function and distribution function of X are given by

P {X = 0} = τ0

P {X = k} = τT k−1t, k ≥ 1

P {X ≤ k} = 1− τT ke, k ≥ 0,

(see [66: Thm 2.5.3]). Most importantly, nondefective discrete PH-distributions are

also guaranteed the existence of a representation such the I − T is nonsingular; in

other words, the probability of absorption from any state is equal to 1.
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A.2.3 Properties of the PH-Distribution

Since there will be occasion to use PH-distributions in conditioning arguments,

we will give some additional properties.

Lemma A.1. Let [φ, T ] be the representation of a nondefective continuous PH-

distribution. Then the following holds:

∫ ∞

0

exp(Tx) dx = (−T )−1. (1.8)

Proof. By definition,

F (x) =

∫ x

0

f(u) du

= φ

∫ x

0

exp(Tu) du (−Te). (1.9)

Taking the limit of (1.9) as x →∞ gives us the following relationship:

1 = φ

∫ ∞

0

exp(Tu) du (−Te). (1.10)

Since the distribution is assumed to be nondefective, we may assume that T is

nonsingular. We thus obtain our result by substituting φIe for 1 in (1.10) and

solving.

The convolution of two independent PH-random variables X and Y will also

be required. The following appears as Theorem 2.6.1 in [66]:

Theorem A.1. Let X ∼ PH(τ , T ) and Y ∼ PH(β, B) be independent with m and

n phases, respectively. Their sum X + Y ∼ PH(γ, C) with m + n phases, where

γ = [τ , τ0β] and C =


 T tβ

0 S


 .
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A.3 Markov-Modulated Poisson Processes (MMPP)

The MMPPs are members of a class of processes termed doubly-stochastic, the

name taking its cue from the fact that the parameters of the statistical distribution

of the random variables of the process are themselves random variables. MMPPs

are considered a special case due to the fact that the exponential distribution of its

interarrivals has a parameter that itself randomly varies according to a finite-state

Markov chain. In other words, if the modulating Markov process {Z(t) : t ≥ 0} has

the state space S = {1, 2, . . . , m}, whenever Z(t) = j, arrivals occur acording to a

Poisson process with rate λj, j ∈ S. An excellent and highly-useful overview of the

MMPP and its properties may be found in [40].

A.3.1 The Markov-Modulated Poisson Process as a Markov Renewal Process

It is a well-established fact that the standard Poisson process {N(t) : t ≥ 0} is a

renewal process characterized by the i.i.d. nature of the interarrival times. However,

as in [40, 82], an MMPP with exponential rates contained in the vector η is not a

standard renewal process due to the dependence of the interarrival durations upon

the evolution of the modulating process. Nevertheless, it is still possible to describe

the MMPP instead as a Markov renewal process or semi-Markov process for which we

require only that the increments of the process behave in accordance with the Markov

property. In order to see this, consider the MMPP at arrival epochs tn ≥ 0 and let

the state of the modulating process at tn be Zn = Z(t+n ) and τn = tn−tn−1. Then the

process {(Zn, τn) : n ≥ 0} defines a Markov renewal sequence. In other words, since

we embed the sequence at transitions of a Markov process, the Markov property may

be said to hold for the increments of the embedded sequence. Most importantly, it is

a well-known property of Markov renewal sequences that {Zn : n ≥ 0} itself defines

a discrete-time Markov chain.
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We next introduce the kernel K(x) of the semi-Markov process, which is defined

to be the matrix with entries given by

Kij(x) = P {Zn = j, τn ≤ x |Zn−1 = i} , x ≥ 0, n ≥ 1,

where i and j belong to the state space of the Markov chain {Zn : n ≥ 0}. The

importance of the kernel lies in the fact that P = K(∞) is the transition probability

matrix of the MMPP embedded at arrival times. Thus, in utilizing Markov renewal

theory, we will have enabled the use of elementary methods defined for Markov chains

in the analysis of the steady-state conditions of a non-Markovian process. We will

use this property later in constructing an embedded Markov process that will serve

as a proxy for the analysis of a non-Markovian M/G/1-type queueing system.

A.3.2 The Relationship of the PH-Distributions to the Markov-Modulated Poisson

Process

The utility of the PH-distribution for our queueing model rests in its association

to the MMPP. As mentioned previously, inter-event times in a MMPP may no longer

be characterized by a single exponential distribution. Neuts [83] has shown that

Markovian processes whose rate parameters η vary lexicographically according to

the states of an external Markov chain with generator Q possess inter-event times

distributed as PH(φ), Tη, where

Tη = Q−∆(η) .

Thus, the distribution of time between the arrival of primary customers to the retrial

queue is PH(φλ, Tλ) for a suitable choice of initial probability vector φλ. In this

light, it is clear that the MMPP is a PH-renewal process, which belongs to a class of

point processes termed versatile by Neuts and, more recently, the Markovian arrival

process (MAP) or the batch Markovian arrival process (BMAP).
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Armed with this knowledge, it is now possible to fully describe the counting

process associated to the MMPP. Define N(t) to be the number of renewals (i.e.

arrivals) in (0, t], and set

Φη
jj′(ν, t) = P{N(t) = ν, Z(t) = j′ |N(0) = 0, Z(0) = j}, (1.11)

where j and j′ are in the state space of the modulating Markov chain {Z(t) : t ≥ 0}
and ν ∈ Z+. As in [40], (1.11) obeys the forward Chapman-Kolmogorov equations

Φη′(0, t) = Φη(0, t)Tη, (1.12)

Φη′(k, t) = Φη(k, t)Tη − Φη(k − 1, t)(Tηeφη), k ≥ 1, (1.13)

which, of course, directly implies that

Φη(0, t) = exp(Tηx).

Equations (1.12) and (1.13) may also be used to derive the probability generating

function Φη∗, which is stated in terms of the following lemma:

Lemma A.2. Consider the MMPP with the exponential arrival rate parameters

contained in the vector η and infinitesimal generator Q of the random environment.

If t > 0 is a real number, then the probability generating function Φη∗(z, t) of Φη(ν, t)

is given by

Φη∗(z, t) = exp[Q− (1− z)∆(η)], (1.14)

where z is a number that resides in the interval (0, 1).

We shall require Lemma A.2 in constructing the entries of the semi-Markov kernel

Q∗(x) for the queueing system that we shall analyze in Section 5.2.

For completeness, we consider the value of the initial probability vector of a

generic MMPP with rate vector η. The choice of this vector determines the start
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time of the MMPP, as well as the state in which the process begins. There is no

restriction on the choice of the initial probability vector, save that its elements must

sum to unity. However, there are two commonly used methods in determining its

value. The first is the selection that results in the environment-stationary version of

the MMPP. This corresponds to the selection of the steady-state probability vector

p of the random environment, which subsequently starts the MMPP at some point

in time at which the environment achieves equilibrium. The other version of the

MMPP is known as the time-stationary version. Here, the initial probability vector

is chosen in such a way that the Markov renewal sequence corresponding to the

MMPP is itself in equilibrium. As it turns out, both versions are stochastically

equivalent (see [82: Thm 5.3.3]).

In characterizing the semi-Markov kernel Q∗(x) for queueing systems with more

than one MMPP (or PH) arrival stream, it becomes necessary to condition upon

the order of arrivals in a regenerative cycle. For this purpose, it is necessary to

determine
∏N

j=1 P{Xi ≤ Xj, i ∈ {1, . . . , N}, for a finite set of PH-random variables

with representations [φi, Ti]. Suppose that N = 2 and that Fi(x) = 1−φi exp(Tx)e

are the c.d.f.s corresponding to the random variables X1, . . . , XN . We compute these

probabilities by conditioning upon the values of F2(x), noting that the dimension of

e, the column vector of ones, varies accordingly, even though this is not explicitly

indicated.

P {X1 ≤ X2} =

∫ ∞

0

F1(x) dF2(x)

=

∫ ∞

0

(1− φ1 exp(T1x)e) (−φ2 exp(T2x)T2e) dx

= 1 + (φ1 ⊗ φ2)

[∫ ∞

0

exp(T1x)⊗ exp(T2x) dx

]
(e⊗ T2e)

= 1 + (φ1 ⊗ φ2)

[∫ ∞

0

exp[(T1 ⊕ T2)x] dx

]
(e⊗ T2e)
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= 1 + (φ1 ⊗ φ2) [−(T1 ⊕ T2)]
−1 (e⊗ T2e). (1.15)

The equality

∫ ∞

0

φ1 exp(T1x)φ2 exp(T2x)T2e dx

= (φ1 ⊗ φ2)

[∫ ∞

0

exp(T1x)⊗ exp(T2x) dx

]
(e⊗ T2e)

follows from first noticing that the ordinary product of two scalars is also a tensor

product, to which we may then apply the product rule (1.2). In other words,

φ1 exp(T1x)eφ2 exp(T2x)T2e

= (φ1 exp(T1x)e)⊗ (φ2 exp(T2x)T2e)

= (φ1 ⊗ φ2)(exp(T1x)⊗ exp(T2x))(e⊗ T2e)

= (φ1 ⊗ φ2) exp[(T1 ⊕ T2)x](e⊗ T2e), (1.16)

with the final equality resulting from the identity (1.3).

In considering the MMPP in the context of the MMPP/G/1 queue, we obtain

a Markov renewal process by considering the number of arrivals to the queue at

instants Sn = T+
n just after the nth departure. Let Yn be the size of the system at

Tn and let τn = Sn − Sn−1. In this way, we obtain the Markov renewal sequence

{(Yn, Zn, τn) : n ≥ 0}, which defines the kernel matrix Q∗(x) consisting of the block

elements

Ajj′(x) = [Q∗
ii′(x)]jj′ = P {Yn = i′, Zn = j′, τn ≤ x |Yn−1 = i, Zn−1 = j}
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if i > 0 and

Bjj′(x) = [Q∗
0i′(x)]jj′ = P {Yn = i′, Zn = j′, τn ≤ x |Yn−1 = 0, Zn−1 = j} ,

where j, j′, and x are defined as before and i and i′ are nonnegative integers that

correspond to the number in the system. The matrix P = B(∞) is the transition

probability matrix of the Markov chain embedded just after departure instants. The

kernel Q∗(x) for M/G/1-type processes assumes a distinctive structure which, like

the tridiagonal form of the QBD generator, a set of class-based methods that may

be applied to a wide spectrum of related models.

154



Bibliography

1. Abramson, M. A. NOMADm Optimization Software. Website. URL
http://www.afit.edu/en/ENC/Faculty/MAbramson/NOMADm.html.

2. Abramson, M. A. and Audet, C. (2006). Convergence of mesh adaptive di-
rect search to second-order stationary points. SIAM Journal on Optimization,
17(2), 606–619.

3. Adan, I. J. B. F. and Kulkarni, V. G. (2003). Single-server queue with Markov-
dependent inter-arrival and service times. Queueing Systems: Theory and Ap-
plications, 45(2), 113–134.

4. Aissani, A. (1988). On the M/G/1/1 queueing system with repeated orders
and unreliable server. Journal of Technology, 6, 98–123. (in French).

5. Aissani, A. (1993). Unreliable queuing with repeated orders. Microelectronics
and Reliability, 33(14), 2093–2106.

6. Aissani, A. (1994). A retrial queue with redundancy and unreliable server.
Queueing Systems: Theory and Applications, 17(3-4), 431–449.

7. Aissani, A. and Artalejo, J. R. (1998). On the single server retrial queue subject
to breakdowns. Queueing Systems: Theory and Applications, 30(3-4), 309–321.

8. Akar, N. and Sohraby, K. (1997). An invariant subspace approach in M/G/1
and G/M/1 type Markov chains. Communications in Statistics.Stochastic Mod-
els, 13(3), 381–416.

9. Almasi, B., Roszik, J., and Sztrik, J. (2005). Homogeneous finite-source re-
trial queues with server subject to breakdowns and repairs. Mathematical &
Computer Modelling, 42(5/6), 673–682.

10. Anisimov, V. and Sztrik, J. (1989). Asymptotic analysis of some complex
renewable systems operating in random environments. European Journal of
Operational Research, 41(2), 162–168.

11. Anisimov, V. V. and Atadzhanov, K. L. (1994). Diffusion approximation of
systems with repeated calls and an unreliable server. Journal of Mathematical
Sciences, 72(2), 3032–3034.

12. Asmussen, S. (1991). Ladder heights and the Markov-modulated M/G/1 queue.
Stochastic Processes and their Applications, 37(2), 313–326.

13. Asmussen, S. (2000). Matrix-analytic models and their analysis. Scandinavian
Journal of Statistics, 27, 193.

155



14. Atencia, I. and Moreno, P. (2006). A discrete-time Geo/G/1 retrial queue with
the server subject to starting failures. Annals of Operations Research, 141(1-4),
85–107.

15. Audet, C. and J.E. Dennis, J. (2006). Mesh adaptive direct search algorithms
for constrained optimization. SIAM Journal on Optimization, 17(1), 188–217.

16. Audet, C. and Orban, D. (2006). Finding optimal algorithmic parameters using
derivative-free optimization. SIAM Journal on Optimization, 17(3), 642–664.

17. Avi-Itzhak, B. (1963). Preemptive repeat priority queues as a special case of
the multipurpose server problem–I. Operations Research, 11(4), 597–609.

18. Avi-Itzhak, B. (1963). Preemptive repeat priority queues as a special case of
the multipurpose server problem–II. Operations Research, 11(4), 610–619.

19. Avi-Itzhak, B. and Naor, P. (1963). Some queuing problems with the service
subject to breakdown. Operations Research, 11(3), 303–320.

20. Baccelli, F. and Makowski, A. A. (1986). Stability and bounds for single server
queues in random environment. Technical report, Inst. Nat. Recherche Inf.
Autom., Le Chesnay, France.

21. Bhat, V. N. (1995). A queueing model in an alternating random environment.
Computers & Industrial Engineering, 28(2), 323–328.

22. Bini, D. A., Meini, B., and Ramaswami, V. (1998). Analyzing M/G/1
paradigms through QBDs: the role of the block structure in computing the
matrix G. In A. S. Alfa and S. R. Chakravarthy, editors, Advances in Matrix
Analytic Methods for Stochastic Models. Notable Publications, Inc., Neshanic
Station, NJ, 73–86.

23. Borst, S., Boucherie, R. J., Boxma, O. J., Key, P., and Smith, D. (1999).
ERMR: A generalised equivalent random method for overflow systems with
repacking. In P. Key and D. Smith, editors, Teletraffic Engineering in a Com-
petitive World. Proceedings of the International Teletraffic Congress - ITC-16.,
volume 3a. Elsevier Science; Alcatel, Amsterdam, the Netherlands, 313–323.

24. Bourgin, R. D. and Cogburn, R. (1981). On determining absorption probabili-
ties for Markov chains in random environments. Advances in Applied Probabil-
ity, 13(2), 369–387.

25. Bright, L. and Taylor, P. G. (1995). Calculating the equilibrium distribution in
level dependent quasi-birth-and-death processes. Communications in Statistics:
Stochastic Models, 11(3), 497–525.

26. Burman, D. Y. and Smith, D. R. (1986). An asymptotic analysis of a queueing
system with Markov-modulated arrivals. Operations Research, 34(1), 105–119.

156



27. Chang, C.-S. and Pinedo, M. (1990). Bounds and inequalities for single-server
loss systems. Queueing Systems, 6, 425–436.

28. Chen, F. and Song, J.-S. (2001). Optimal policies for multiechelon inventory
problems with Markov-modulated demand. Operations Research, 49(2), 226–
234.

29. Choi, B. D. and Park, K. K. (1990). The M/G/1 retrial queue with Bernoulli
schedule. Queueing Systems: Theory and Applications, 7, 219–228.

30. Clos, C. (1948). An aspect of the dialing behaviour of subscribers and its effect
on the trunk plant. Bell Systems Technical Journal, 27, 424–445.

31. Cohen, J. W. (1957). An aspect of the dialing behaviour of subscribers and its
effect on the trunk plant. Philips Telecommunication Review, 18(2), 49–101.

32. Cohen, J. W. (1957). The full availability group of trunks with an arbitrary
distribution of the inter-arrival times and a negative exponential holding time
distribution. Simon Stevin: A Quarterly Journal of Pure and Applied Mathe-
matics, 31, 169–181.

33. Dohi, T., Kaio, N., and Osaki, S. (2001). Optimal periodic maintenance strat-
egy under an intermittently used environment. IIE Transactions, 33(12), 1037.

34. Dudin, A. N. and Klimenok, V. I. (1997). Calculation of the characteristics of a
single-server system functioning in a synchronous Markovian random environ-
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